已知△ABC中,∠C=90°,tanA=,D是AC上一點,∠CBD=∠A,則sin∠ABD=( )

A.
B.
C.
D.
【答案】分析:作DE⊥AB于點E,根據(jù)相等的角的三角函數(shù)值相等即可得到===,設CD=1,則可以求得AD的長,然后利用勾股定理即可求得DE、AE的長,則BE可以求得,根據(jù)同角三角函數(shù)之間的關系即可求解.
解答:解:作DE⊥AB于點E.
∵∠CBD=∠A,
∴tanA=tan∠CBD====,
設CD=1,則BC=2,AC=4,
∴AD=AC-CD=3,
在直角△ABC中,AB===2,
在直角△ADE中,設DE=x,則AE=2x,
∵AE2+DE2=AD2
∴x2+(2x)2=9,
解得:x=,
則DE=,AE=
∴BE=AB-AE=2-=,
∴tan∠DBA==,
∴sin∠DBA=
故選A.
點評:本題考查了三角函數(shù)的定義,以及勾股定理,正確理解三角函數(shù)就是直角三角形中邊的比值是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知△ABC中,∠ACB=90°,AC=BC,P、Q分別是邊AB、BC上的動點,且點P不與點A、B重合,點Q不與點B、C重合.
(1)在以下五個結論中:①∠CQP=45°;②PQ=AC;③以A、P、C為頂點的三角形全等于△PQB;④以A、P、C為頂點的三角形全等于△CPQ;⑤以A、P、C為頂點的三角形相似于△CPQ.一定不成立的是
 
.(只需將結論的代號填入題中的模線上).
(2)設AC=BC=1,當CQ的長取不同的值時,△CPQ是否可能為直角三角形?若可能,請說明所有的精英家教網(wǎng)情況;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知△ABC中,DE∥BC,EF∥AB,AB=3,BC=6,AD:DB=2:1,則四邊形DBFE的周長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,已知△ABC中,AB=AC,以AB為直徑作⊙O交BC于D,交AC于E,過D作DF⊥AC于F
(1)求證:DF是⊙O的切線;
(2)連接DE,且AB=4,若∠FDC=30°,試求△CDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知△ABC中,AB=3,AC=5,第三邊BC的長為一元二次方程x2-9x+20=0的一個根,則該三角形為
等腰或直角
等腰或直角
三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC中,AB=AC,AB垂直平分線交AC于D,連接BE,若∠A=40°,則∠EBC=(  )

查看答案和解析>>

同步練習冊答案