如圖,對(duì)稱(chēng)軸為直線(xiàn)x=的拋物線(xiàn)經(jīng)過(guò)點(diǎn)A(6,0)和B(0,4).
(1)求拋物線(xiàn)解析式及頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)E(x,y)是拋物線(xiàn)上一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以O(shè)A為對(duì)角線(xiàn)的平行四邊形,求四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(3)①當(dāng)四邊形OEAF的面積為24時(shí),請(qǐng)判斷OEAF是否為菱形?
②是否存在點(diǎn)E,使四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(1)由拋物線(xiàn)的對(duì)稱(chēng)軸是,可設(shè)解析式為.
把A、B兩點(diǎn)坐標(biāo)代入上式,得
解之,得
故拋物線(xiàn)解析式為,頂點(diǎn)為
(2)∵點(diǎn)在拋物線(xiàn)上,位于第四象限,且坐標(biāo)適合
,
∴y<0,即-y>0,-y表示點(diǎn)E到OA的距離.
∵OA是的對(duì)角線(xiàn),
∴.
因?yàn)閽佄锞(xiàn)與軸的兩個(gè)交點(diǎn)是(1,0)的(6,0),所以,自變量的
取值范圍是1<<6.
根據(jù)題意,當(dāng)S = 24時(shí),即.
化簡(jiǎn),得 解之,得
故所求的點(diǎn)E有兩個(gè),分別為E1(3,-4),E2(4,-4).
點(diǎn)E1(3,-4)滿(mǎn)足OE = AE,所以是菱形;
點(diǎn)E2(4,-4)不滿(mǎn)足OE = AE,所以不是菱形.
當(dāng)OA⊥EF,且OA = EF時(shí),是正方形,此時(shí)點(diǎn)E的坐標(biāo)只能是(3,-3).
而坐標(biāo)為(3,-3)的點(diǎn)不在拋物線(xiàn)上,故不存在這樣的點(diǎn)E,使為正方形.
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
7 | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
9 | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
7 | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
7 | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com