(2009•眉山)如圖,AB、CD是⊙O的兩條互相垂直的弦,圓心角∠AOC=130°,AD,CB的延長線相交于P,∠P=    度.
【答案】分析:運用同弧所對的圓周角是圓心角的倍得出∠ADC=∠ABC=65°,再求∠DCB,從而求出∠P.
解答:解:設(shè)AB與CD交于點E,
∵AB⊥CD,
∴∠AED=∠CEB=90°,
∵圓心角∠AOC=130°,
∴∠ADC=∠ABC=65°,
∴∠BAD=∠DCB=90°-65°=25°,
∵∠ADC=∠P+∠DCP,
∴∠P=65°-25°=40°.
點評:本題利用了直角三角形的性質(zhì)和三角形的外角與內(nèi)角的關(guān)系及圓周角定理求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2011年浙江省杭州市中考數(shù)學模擬試卷(42)(解析版) 題型:解答題

(2009•眉山)如圖,已知直線y=x+1與y軸交于點A,與x軸交于點D,拋物線y=x2+bx+c與直線交于A、E兩點,與x軸交于B、C兩點,且B點坐標為(1,0).
(1)求該拋物線的解析式;
(2)動點P在x軸上移動,當△PAE是直角三角形時,求點P的坐標P;
(3)在拋物線的對稱軸上找一點M,使|AM-MC|的值最大,求出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年3月浙江省杭州市九年級月考數(shù)學試卷(解析版) 題型:選擇題

(2009•眉山)如圖,點A在雙曲線y=上,且OA=4,過A作AC⊥x軸,垂足為C,OA的垂直平分線交OC于B,則△ABC的周長為( )

A.
B.5
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學考前30天沖刺得分專練8:二次函數(shù)(解析版) 題型:解答題

(2009•眉山)如圖,已知直線y=x+1與y軸交于點A,與x軸交于點D,拋物線y=x2+bx+c與直線交于A、E兩點,與x軸交于B、C兩點,且B點坐標為(1,0).
(1)求該拋物線的解析式;
(2)動點P在x軸上移動,當△PAE是直角三角形時,求點P的坐標P;
(3)在拋物線的對稱軸上找一點M,使|AM-MC|的值最大,求出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學考前30天沖刺得分專練7:反比例函數(shù)(解析版) 題型:選擇題

(2009•眉山)如圖,點A在雙曲線y=上,且OA=4,過A作AC⊥x軸,垂足為C,OA的垂直平分線交OC于B,則△ABC的周長為( )

A.
B.5
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年安徽省蕪湖市中考數(shù)學模擬試卷(一)(解析版) 題型:解答題

(2009•眉山)如圖,已知直線y=x+1與y軸交于點A,與x軸交于點D,拋物線y=x2+bx+c與直線交于A、E兩點,與x軸交于B、C兩點,且B點坐標為(1,0).
(1)求該拋物線的解析式;
(2)動點P在x軸上移動,當△PAE是直角三角形時,求點P的坐標P;
(3)在拋物線的對稱軸上找一點M,使|AM-MC|的值最大,求出點M的坐標.

查看答案和解析>>

同步練習冊答案