拓展探索、綜合提升
從2開始,連續(xù)的偶數(shù)相加,它們和的情況如下表:
加數(shù)的個(gè)數(shù)n S
1 2=1×2
2 2+4=6=2×3
3 2+4+6=12=3×4
4 2+4+6+8=20=4×5
5 2+4+6+8+10=30=5×6
(1)若n=8時(shí),則S的值為
72
72

(2)根據(jù)表中的規(guī)律猜想:用n的代數(shù)式表示S的公式為:S=2+4+6+8+…+2n=
n(n+1)
n(n+1)

(3)根據(jù)上題的規(guī)律計(jì)算102+104+106+…+2002的值(要有過程).
分析:(1)根據(jù)表中的規(guī)律發(fā)現(xiàn):第n個(gè)式子的和是n(n+1),則當(dāng)n=8時(shí),S=8×9=72;
(2)根據(jù)特殊的式子即可發(fā)現(xiàn)規(guī)律;
(3)結(jié)合上述規(guī)律,只需加上2+4+…+2002再減去2+4+…+100即可計(jì)算.
解答:解:(1)∵n=1時(shí),S=2=1×(1+1),
n=2時(shí),S=6=2×(2+1),
n=3時(shí),S=12=3×(3+1),

∴n個(gè)最小的連續(xù)偶數(shù)相加時(shí),和為:n(n+1);
∴當(dāng)n=8時(shí),S=8×9=72;

(2)S=2+4+6+8+…+2n=n(n+1);

(3)原式=(2+4+6+…+2002)-(2+4+6+…+100)=1001×1002-50×51=1003002-2550=1000452.
故答案為72;n(n+1).
點(diǎn)評(píng):本題是一道找規(guī)律的題目,要求學(xué)生通過觀察,分析、歸納發(fā)現(xiàn)其中的規(guī)律,并應(yīng)用發(fā)現(xiàn)的規(guī)律解決問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

同步練習(xí)冊(cè)答案