【題目】如圖,拋物線y=ax2+bx+c(a≠0)過點(diǎn)(1,0)和點(diǎn)(0,﹣1),且頂點(diǎn)在第三象限,則a的取值范圍是(
A.a>0
B.0<a<1
C.1<a<2
D.﹣1<a<1

【答案】B
【解析】解:∵拋物線過(1,0)、(0,﹣1), ∴a+b+c=0且c=﹣1,
則a+b=1,即b=1﹣a,
∵拋物線的頂點(diǎn)在第三象限,
∴﹣ <0,即﹣ <0,
∵開口向上,即a>0,
∴1﹣a>0,得a<1,
則0<a<1,
故選:B.
【考點(diǎn)精析】關(guān)于本題考查的二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系,需要了解二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c)才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程
(1)解方程組:
(2)已知關(guān)于x的一元二次方程x2+2x﹣m=1有實(shí)數(shù)根,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了節(jié)省材料,某水產(chǎn)養(yǎng)殖戶利用水庫(kù)的岸堤(岸堤足夠長(zhǎng))為一邊,用總長(zhǎng)為80m的圍網(wǎng)在水庫(kù)中圍成了如圖所示的①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等.設(shè)BC的長(zhǎng)度為xm,矩形區(qū)域ABCD的面積為ym2

(1)求y與x之間的函數(shù)關(guān)系式,并注明自變量x的取值范圍;
(2)x為何值時(shí),y有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點(diǎn),則函數(shù)y=ax2+(b﹣1)x+c的圖象可能是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A(0,2),B(1,0),點(diǎn)C為線段AB的中點(diǎn),將線段BA繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)90°得到線段BD,拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)D.

(1)若該拋物線經(jīng)過原點(diǎn)O,且a=﹣ ,求該拋物線的解析式;
(2)在(1)的條件下,點(diǎn)P(m,n)在拋物線上,且∠POB銳角,滿足∠POB+∠BCD<90°,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB=90°,OM平分∠AOB,直角三角板的直角頂點(diǎn)P在射線OM上移動(dòng),兩直角邊分別與OA、CB相交于點(diǎn)C、D.

(1)問PC與PD相等嗎?試說明理由.

(2)若OP=2,求四邊形PCOD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算或化簡(jiǎn):
(1)2cos30°﹣ +( 0+(﹣1)2017
(2)(1+ )÷

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCO為正方形,A點(diǎn)坐標(biāo)為(0,2),點(diǎn)P為x軸負(fù)半軸上一動(dòng)點(diǎn),以AP為直角作等腰直角三角形APD,∠APD=90°(點(diǎn)D落在第四象限)

(1)當(dāng)點(diǎn)P的坐標(biāo)為(﹣1,0)時(shí),求點(diǎn)D的坐標(biāo);
(2)點(diǎn)P在移動(dòng)的過程中,點(diǎn)D是否在直線y=x﹣2上?請(qǐng)說明理由;
(3)連接OB交AD于點(diǎn)G,求證:AG=DG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

數(shù)學(xué)活動(dòng)課上,老師出了一道作圖問題:如圖,已知直線l和直線l外一點(diǎn)P.用直尺和圓規(guī)作直線PQ,使PQ⊥l于點(diǎn)Q.”

小艾的作法如下:

(1)在直線l上任取點(diǎn)A,以A為圓心,AP長(zhǎng)為半徑畫。

(2)在直線l上任取點(diǎn)B,以B為圓心,BP長(zhǎng)為半徑畫。

(3)兩弧分別交于點(diǎn)P和點(diǎn)M

(4)連接PM,與直線l交于點(diǎn)Q,直線PQ即為所求.

老師表?yè)P(yáng)了小艾的作法是對(duì)的.

請(qǐng)回答:小艾這樣作圖的依據(jù)是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案