【題目】如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點(diǎn),點(diǎn)P、Q在DC邊上,且PQ=DC.若AB=16,BC=20,則圖中陰影部分的面積是 .
【答案】92
【解析】
試題分析:連接MN,由于M,N分別是ADBC上的中點(diǎn),所以MN∥AB∥CD,而四邊形ABCD是長(zhǎng)方形,所以四邊形MNCD是矩形,再過(guò)O作OE⊥MN,同樣也垂直于CD,再利用PQ=DC,可得相似比,那么可求出OE,OF,以及MN,CD的長(zhǎng),再利用三角形的面積公式可求出△MNO和△PQO的面積,用矩形MNCD的面積減去△MNO的面積減去△PQO的面積,即可求陰影部分面積.
解:連接MN,過(guò)O作OE⊥MN,交MN于E,交CD于F,
在矩形ABCD中,AD∥BC,AD=BC,
∵M、N分別是邊AD、BC的中點(diǎn),
∴DM=CN,
∴四邊形MNCD是平行四邊形,
∴MN∥CD,
∴△OMN∽△PQO,
相似比是MN:PQ=4:1,
∴OE:OF=EF:GH=4:1,
又∵EF=BC=10,
∴OE=8,OF=2,
∴S△MNO=×16×8=64,
∴S△PQO=×4×2=4,S矩形MNCD=16×10=160,
∴S陰影=160﹣64﹣4=92.
故答案為:92.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線(xiàn)m經(jīng)過(guò)點(diǎn)A,BD⊥直線(xiàn)m,CE⊥直線(xiàn)m,垂足分別為點(diǎn)D、E.猜測(cè)DE、BD、CE三條線(xiàn)段之間的數(shù)量關(guān)系(直接寫(xiě)出結(jié)果即可).
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線(xiàn)m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請(qǐng)問(wèn)第(1)題中DE、BD、CE之間的關(guān)系是否仍然成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線(xiàn)m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線(xiàn)上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷線(xiàn)段DF、EF的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=BC,D是AC中點(diǎn),BE平分∠ABD交AC于點(diǎn)E,點(diǎn)O是AB上一點(diǎn),⊙O過(guò)B、E兩點(diǎn),交BD于點(diǎn)G,交AB于點(diǎn)F.
(1)判斷直線(xiàn)AC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)當(dāng)BD=6,AB=10時(shí),求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】邊長(zhǎng)都為整數(shù)的△ABC≌△DEF,AB與DE是對(duì)應(yīng)邊,AB=2,BC=4.若△DEF的周長(zhǎng)為偶數(shù),則DF的長(zhǎng)為( )
A. 3 B. 4 C. 5 D. 3或4或5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】課本1.4有這樣一道例題:
問(wèn)題4:用一根長(zhǎng)22cm的鐵絲:
(1)能否圍成面積是30cm2的矩形?
(2)能否圍成面積是32cm2的矩形?
據(jù)此,一位同學(xué)提出問(wèn)題:“用這根長(zhǎng)22cm的鐵絲能否圍成面積最大的矩形?若能?chē),求出面積最大值;若不能?chē),?qǐng)說(shuō)明理由.”請(qǐng)你完成該同學(xué)提出的問(wèn)題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠C=90°,BF、DE分別平分∠ABC、∠ADC.判斷DE、BF是否平行,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠C=90°,BC=6cm,AC=8cm,點(diǎn)P從點(diǎn)A開(kāi)始沿AC向點(diǎn)C以2厘米/秒的速度運(yùn)動(dòng);與此同時(shí),點(diǎn)Q從點(diǎn)C開(kāi)始沿CB邊向點(diǎn)B以1厘米/秒的速度運(yùn)動(dòng);如果P、Q分別從A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).
(1)經(jīng)過(guò)幾秒,△CPQ的面積等于3cm2?
(2)在整個(gè)運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使PQ恰好平分△ABC的面積?若存在,求出運(yùn)動(dòng)時(shí)間t;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在通常的日歷牌上,可以看到一些數(shù)所滿(mǎn)足的規(guī)律,表①是2015年9月份的日歷牌.
(1)在表①中,我們選擇用如表②那樣2×2的正方形框任意圈出2×2個(gè)數(shù),將它們線(xiàn)交叉相乘,再相減,如:用正方形框圈出4、5、11、12四個(gè)數(shù),然后將它們交叉相乘,再相減,即4×12﹣5×11=﹣7或5×11﹣4×12=7,請(qǐng)你用表②的正方形框任意圈出2×2個(gè)數(shù),將它們先交叉相乘,再相減.列出算式并算出結(jié)果(選擇其中一個(gè)算式即可);
(2)在用表②的正方形框任意圈出2×2個(gè)數(shù)中,將它們先交叉相乘,再相減,若設(shè)左上角的數(shù)字為n,用含n的式子表示其他三個(gè)位置的數(shù)字,列出算式并算出結(jié)果(選擇其中一個(gè)算式即可);
(3)若選擇用如表③那樣3×3的正方形方框任意圈出3×3個(gè)數(shù),將正方形方框四個(gè)角位置上的4個(gè)數(shù)先交叉相乘,再相減,你發(fā)現(xiàn)了什么?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com