【題目】如圖,⊙O的半徑是2,弦AB=,點(diǎn)C為是優(yōu)弧AB上一個(gè)動(dòng)點(diǎn),BDBC交直線AC于點(diǎn)D,則ABD的面積的最大值為___________ .

【答案】3

【解析】

連結(jié)OA,如圖,∠AOB=120°,根據(jù)圓周角定理得∠ACB=AOB=60°,由于BCBD,所以∠D=30°,因?yàn)?/span>AB=,則要使ABD的最大面積,點(diǎn)DAB的距離要最大;當(dāng)點(diǎn)D在⊙M上的優(yōu)弧AB的中點(diǎn)時(shí),點(diǎn)DAB的距離最大,從而得到ABD的最大面積.

解:連結(jié)OA,過點(diǎn)OOE垂直AB,交AB與點(diǎn)E

已知⊙O的半徑是2,弦AB=,BEBC,根據(jù)垂徑定理和勾股定理可得

OE=1,AE=sin∠OAE=

∠OAE=∠OBE=30°

(同弧所對(duì)的圓周角是圓心角的一半)

ADB =30°,點(diǎn)D在以AB為弦的⊙M上運(yùn)動(dòng),

BMA=60°

AB=MB=DM=MA=,

當(dāng)點(diǎn)D在優(yōu)弧AB的中點(diǎn)時(shí),點(diǎn)DAB的距離最大,從而得到ABD的最大面積.

過點(diǎn)DDNAB于點(diǎn)N

故答案為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角中,延長(zhǎng)到點(diǎn),點(diǎn)邊上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作直線,分別交的平分線于,兩點(diǎn),連接、.在下列結(jié)論中.;②;③若,,則的長(zhǎng)為6;④當(dāng)時(shí),四邊形是矩形.其中正確的是( )

A. ①④B. ①②C. ①②③D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游樂園有一個(gè)直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心3米處達(dá)到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.如圖所示,以水平方向?yàn)?/span>x軸,噴水池中心為原點(diǎn)建立直角坐標(biāo)系.

(1)求水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式;

(2)王師傅在噴水池內(nèi)維修設(shè)備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的王師傅站立時(shí)必須在離水池中心多少米以內(nèi)?

(3)經(jīng)檢修評(píng)估,游樂園決定對(duì)噴水設(shè)施做如下設(shè)計(jì)改進(jìn):在噴出水柱的形狀不變的前提下,把水池的直徑擴(kuò)大到32米,各方向噴出的水柱仍在噴水池中心保留的原裝飾物(高度不變)處匯合,請(qǐng)?zhí)骄繑U(kuò)建改造后噴水池水柱的最大高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)閱讀理解

利用旋轉(zhuǎn)變換解決數(shù)學(xué)問題是一種常用的方法.如圖,點(diǎn)是等邊三角形內(nèi)一點(diǎn),,.的度數(shù).

為利用已知條件,不妨把繞點(diǎn)順時(shí)針旋轉(zhuǎn),連接,則的長(zhǎng)為_______;在中,易證,且的度數(shù)為________,綜上可得的度數(shù)為_______

2)類比遷移

如圖,點(diǎn)是等腰內(nèi)的一點(diǎn),,,.的度數(shù);

3)拓展應(yīng)用

如圖,在四邊形中,,,,請(qǐng)直接寫出的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某數(shù)學(xué)興趣小組為測(cè)量一棵古樹和教學(xué)樓的高,先在處用高1.5米的測(cè)角儀測(cè)得古樹頂端的仰角,此時(shí)教學(xué)樓頂端恰好在視線上,再向前走9米到達(dá)處,又測(cè)得教學(xué)樓頂端的仰角,點(diǎn)、三點(diǎn)在同一水平線上.

1)計(jì)算古樹的高;

2)計(jì)算教學(xué)樓的高.(結(jié)果精確到0.1米,參考數(shù)據(jù):,,.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+1與反比例函數(shù)y的圖象相交于點(diǎn)A、B,過點(diǎn)AACx軸,垂足為點(diǎn)C(﹣2,0),連接AC、BC

1)求反比例函數(shù)的解析式;

2)求SABC;

3)利用函數(shù)圖象直接寫出關(guān)于x的不等式﹣x+1的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過A(2,0). 設(shè)頂點(diǎn)為點(diǎn)P,與x軸的另一交點(diǎn)為點(diǎn)B.

(1)求b的值,求出點(diǎn)P、點(diǎn)B的坐標(biāo);

(2)如圖,在直線 上是否存在點(diǎn)D,使四邊形OPBD為平行四邊形?若存在,求出點(diǎn)D的坐

標(biāo);若不存在,請(qǐng)說明理由;

(3)在x軸下方的拋物線上是否存在點(diǎn)M,使AMP≌△AMB?如果存在,試舉例驗(yàn)證你的猜想;如果不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=x2+bx+cx軸分別交于點(diǎn)AB,與y軸交于點(diǎn)C,A點(diǎn)坐標(biāo)為(-1,0),B點(diǎn)坐標(biāo)為(3,0),頂點(diǎn)為D

1)求拋物線解析式;

2)若點(diǎn)M在拋物線的對(duì)稱軸上,求ACM周長(zhǎng)的最小值;

3)以點(diǎn)P為圓心的圓經(jīng)過A、B兩點(diǎn),且與直線CD相切,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯(cuò)誤的是

A. Rt△ABC中,AB=3,BC=4,則AC=5

B. 極差能反映一組數(shù)據(jù)的變化范圍;

C. 經(jīng)過點(diǎn)A2,3)的雙曲線一定經(jīng)過點(diǎn)B-3,-2);

D. 連接菱形各邊中點(diǎn)所得的四邊形是矩形.

查看答案和解析>>

同步練習(xí)冊(cè)答案