如圖,直角坐標(biāo)系中,兩條拋物線有相同的對稱軸,下列關(guān)系中不正確的是


  1. A.
    a1<a2
  2. B.
    m1=m2
  3. C.
    h2>h1
  4. D.
    m1>0,m2>0
A
分析:根據(jù)函數(shù)的圖象和拋物線的對稱軸所在的位置判斷出m2,h2,m1,h1的正負(fù),再根據(jù)實數(shù)比較大小的法則進(jìn)行比較即可.
解答:①由函數(shù)y=a2(x-m22+h2可知,m2>0,h2>0,
由函數(shù)y=a1(x-m12+h1可知,m1>0,h1<0,
∵兩拋物線有相同的對稱軸,
∴m1=m2,故B正確;
②∵h(yuǎn)2>0,h1<0,
∴h2>h1,故C正確;
③由圖象可知:m1>0,m2>0,
故D正確;
④由圖象可知:a1>a2,故A不正確;
故選A.
點評:此題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,解題的關(guān)鍵是根據(jù)函數(shù)的圖象求出二次函數(shù)的系數(shù),運用頂點坐標(biāo)及對稱軸判斷橫坐標(biāo)及縱坐標(biāo)的大。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直角坐標(biāo)系中,△ABC的頂點都在網(wǎng)格點上,其中,A點坐標(biāo)為(2,-1),則△ABC的面積為
 
平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角坐標(biāo)系中,已知點A(3,0),B(t,0)(0<t<
32
),以AB為邊在x軸上方作正方形ABCD,點E是直線OC與正方形ABCD的外接圓除點C以外的另一個交點,連接AE與BC相交于點F.
(1)求證:△OBC≌△FBA;?
(2)一拋物線經(jīng)過O、F、A三點,試用t表示該拋物線的解析式;?
(3)設(shè)題(2)中拋物線的對稱軸l與直線AF相交于點G,若G為△AOC的外心,試求出拋物線的解析式;?
(4)在題(3)的條件下,問在拋物線上是否存在點P,使該點關(guān)于直線AF的對稱點在x軸上精英家教網(wǎng)?若存在,請求出所有這樣的點;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在如圖平面直角坐標(biāo)系中,△ABC三個頂點A、B、C的坐標(biāo)分別為A(2,-1),B(1,-3),C(4,-4),
請解答下列問題:
(1)把△ABC向左平移4個單位,再向上平移3個單位,恰好得到△A1B1C1試寫出△A1B1C1三個頂點的坐標(biāo);
(2)在直角坐標(biāo)系中畫出△A1B1C1
(3)求出線段AA1的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角坐標(biāo)系中,△ABC的頂點都在網(wǎng)格點上,C點坐標(biāo)為(1,2),原來△ABC各個頂點縱坐標(biāo)不變,橫坐標(biāo)都增加2,所得的三角形面積是
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在如圖的直角坐標(biāo)系中,將△ABC平移后得到△A′B′C′,它們的個頂點坐標(biāo)如表所示:
△ABC A(a,0) B(3,0) C(5,5)
△A′B′C′ A′(4,2) B′(7,b) C′(c,d)
(1)觀察表中各對應(yīng)點坐標(biāo)的變化,并填空:△ABC向
平移
4
4
個單位長度,再向
平移
2
2
個單位長度可以得到△A′B′C′;
(2)在坐標(biāo)系中畫出△ABC及平移后的△A′B′C′;
(3)求出△A′B′C′的面積.

查看答案和解析>>

同步練習(xí)冊答案