【題目】如圖,已知:△ABC內(nèi)接于⊙O,點(diǎn)D在OC的延長(zhǎng)線(xiàn)上,sinB=,∠D=30度.

(1)求證:AD是⊙O的切線(xiàn);

(2)若AC=6,求AD的長(zhǎng).

【答案】(1)AD是⊙O的切線(xiàn);(2)

【解析】

試題分析:(1)要證明AD是⊙O的切線(xiàn),只要證明∠OAD=90°即可;

(2)根據(jù)已知可得△AOC是等邊三角形,從而得到OA=AC=6,則可以利用勾股定理求得AD的長(zhǎng).

試題解析:(1)證明:如圖,連接OA;

∵sinB=,

∴∠B=30°,

∵∠AOC=2∠B,

∴∠AOC=60°;

∵∠D=30°,

∴∠OAD=180°﹣∠D﹣∠AOD=90°,

∴AD是⊙O的切線(xiàn).

(2)解:∵OA=OC,∠AOC=60°,

∴△AOC是等邊三角形,

∴OA=AC=6,

∵∠OAD=90°,∠D=30°,

∴AD=AO=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)點(diǎn)A(-2,5)作x軸的垂線(xiàn)L,則直線(xiàn)L上的點(diǎn)的坐標(biāo)特點(diǎn)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于點(diǎn)E.

(1)求證:△ABD≌△EBD;

(2)過(guò)點(diǎn)E作EF∥DA,交BD于點(diǎn)F,連接AF.求證:四邊形AFED是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市舉辦中學(xué)生足球賽,初中男子組共有市直學(xué)校的A、B兩隊(duì)和縣區(qū)學(xué)校的e、f、g、h四隊(duì)報(bào)名參賽,六支球隊(duì)分成甲、乙兩組,甲組由A、e、f三隊(duì)組成,乙組由B、g、h三隊(duì)組成,現(xiàn)要從甲、乙兩組中各隨機(jī)抽取一支球隊(duì)進(jìn)行首場(chǎng)比賽.

(1)在甲組中,首場(chǎng)比賽抽到e隊(duì)的概率是 ;

(2)請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法,求首場(chǎng)比賽出場(chǎng)的兩個(gè)隊(duì)都是縣區(qū)學(xué)校隊(duì)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),過(guò)點(diǎn)E作EF∥AB,交BC于點(diǎn)F.

(1)求證:四邊形DBFE是平行四邊形;

(2)當(dāng)△ABC滿(mǎn)足什么條件時(shí),四邊形DBFE是菱形?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列計(jì)算正確的是( 。

A. m3﹣m2=m B. m3﹣m2=m5 C. m+n2=m2+n2 D. m32=m6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,若將左圖正方形剪成四塊,恰能拼成右圖的矩形,設(shè)a=1,則b=( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿(mǎn)分10分)如圖,在平行四邊形ABCD中,點(diǎn)A、BC的坐標(biāo)分別是(1,0)、(3,1)、(33),雙曲線(xiàn)y=k≠0x0)過(guò)點(diǎn)D

1)求此雙曲線(xiàn)的解析式;

2)作直線(xiàn)ACy軸于點(diǎn)E,連結(jié)DE,求 CDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠1=∠2,∠B=∠C,可推得ABCD.理由如下:

∵∠1=2(已知),

且∠1=CGD___ ___

∴∠2=CGD(等量代換)

CEBF__ ___

∴∠____ ____=BFD___ ____

又∵∠B=C(已知)

____ ____(等量代換)

ABCD___ ____

查看答案和解析>>

同步練習(xí)冊(cè)答案