【題目】如圖,正方形OABC∽正方形ODEF,它們是以原點(diǎn)O為位似中心的位似圖形,位似比為1 點(diǎn)A的坐標(biāo)為(01),則點(diǎn)E的坐標(biāo)是________________

【答案】 -,-

【解析】試題分析:由題意可得OAOD=1,又由點(diǎn)A的坐標(biāo)為(1,0),即可求得OD的長,又由正方形的性質(zhì),即可求得E點(diǎn)的坐標(biāo).

解:正方形OABC與正方形ODEF是位似圖形,O為位似中心,相似比為1

OAOD=1,

點(diǎn)A的坐標(biāo)為(0,1),

OA=1,

OD=,

四邊形ODEF是正方形,

DE=OD=

正方形OABC∽正方形ODEF,它們是以原點(diǎn)O為位似中心的位似圖形,

E點(diǎn)的坐標(biāo)為:()或(-,-).

故答案為:(, )或(-,-).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對(duì)稱軸為直線x=1的拋物線y=ax2+bx+8過點(diǎn)(﹣2,0).

(1)求拋物線的表達(dá)式,并寫出其頂點(diǎn)坐標(biāo);

(2)現(xiàn)將此拋物線沿y軸方向平移若干個(gè)單位,所得拋物線的頂點(diǎn)為D,與y軸的交點(diǎn)為B,與x軸負(fù)半軸交于點(diǎn)A,過Bx軸的平行線交所得拋物線于點(diǎn)C,若AC∥BD,試求平移后所得拋物線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,點(diǎn)、、依次在直線上,現(xiàn)將射線繞點(diǎn)沿順時(shí)針方向以每秒的速度旋轉(zhuǎn),同時(shí)射線繞點(diǎn)沿逆時(shí)針方向以每秒的速度旋轉(zhuǎn),如圖,設(shè)旋轉(zhuǎn)時(shí)間為秒).

1)用含的代數(shù)式表示的度數(shù).

2)在運(yùn)動(dòng)過程中,當(dāng)第二次達(dá)到時(shí),求的值.

3)在旋轉(zhuǎn)過程中是否存在這樣的,使得射線是由射線、射線、射線中的其中兩條組成的角(指大于而不超過的角)的平分線?如果存在,請(qǐng)直接寫出的值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點(diǎn)A、B、O在數(shù)軸上對(duì)應(yīng)的數(shù)為a、b、0,且滿足|a+8|+b1220,點(diǎn)M、N分別從O、B出發(fā),同時(shí)向左勻速運(yùn)動(dòng),M的速度為1個(gè)單位長度每秒,N的速度為3個(gè)單位長度每秒,A、B之間的距離定義為:AB|ab|

1)直接寫出OA   OB   

2)設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),恰好有AN2AM;

3)若點(diǎn)P為線段AM的中點(diǎn),Q為線段BN的中點(diǎn),M、N在運(yùn)動(dòng)的過程中,PQ+MN的長度是否發(fā)生變化?若不變,請(qǐng)說明理由,若變化,當(dāng)t為何值時(shí),PQ+MN有最小值?最小值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成,已知墻長為18(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊的長為x米.

(1)若苗圃園的面積為72平方米,求x的值;

(2)若平行于墻的一邊長不大于14米,這個(gè)苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請(qǐng)說明理由;

(3)當(dāng)這個(gè)苗圃園的面積不小于100平方米時(shí),直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OM是AOC的平分線,ON是BOC的平分線.

(1)如圖1,當(dāng)AOB是直角,BOC=60°時(shí),MON的度數(shù)是多少?

(2)如圖2,當(dāng)AOB=αBOC=60°時(shí),猜想MON與α的數(shù)量關(guān)系;

(3)如圖3,當(dāng)AOB=α,BOC=β時(shí),猜想MON與α、β有數(shù)量關(guān)系嗎?如果有,指出結(jié)論并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,C=60°,BC=3厘米,AC=4厘米,點(diǎn)P從點(diǎn)B出發(fā),沿BCA以每秒1厘米的速度勻速運(yùn)動(dòng)到點(diǎn)A.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為x,B、P兩點(diǎn)間的距離為y厘米

小新根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)隨自變量的變化而變化的規(guī)律進(jìn)行了探究

下面是小新的探究過程,請(qǐng)補(bǔ)充完整:

(1)通過取點(diǎn)、畫圖、測(cè)量,得到了xy的幾組值,如下表:

x(s)

0

1

2

3

4

5

6

7

y(cm)

0

1.0

2.0

3.0

2.7

2.7

m

3.6

經(jīng)測(cè)量m的值是(保留一位小數(shù))

(2)建立平面直角坐標(biāo)系,描出表格中所有各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;

(3)結(jié)合畫出的函數(shù)圖象,解決問題:在曲線部分的最低點(diǎn)時(shí),在△ABC中畫出點(diǎn)P所在的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著通訊技術(shù)迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了你最喜歡的溝通方式調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問題:

1)這次統(tǒng)計(jì)共抽查了  名學(xué)生;在扇形統(tǒng)計(jì)圖中,表示“QQ”的扇形圓心角的度數(shù)為   

2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)該校共有1500名學(xué)生,請(qǐng)估計(jì)該校最喜歡用微信進(jìn)行溝通的學(xué)生有多少名?

4)某天甲、乙兩名同學(xué)都想從微信“QQ”、電話三種溝通方式中選一種方式與對(duì)方聯(lián)系,請(qǐng)用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選中同一種溝通方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長為1.格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)的坐標(biāo)分別是

(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;

(2)請(qǐng)畫出關(guān)于軸對(duì)稱的

(3)請(qǐng)?jiān)?/span>軸上求作一點(diǎn),使的周長最小,并寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案