【題目】如圖,在△ABC中,AB=AC,DBC的中點,連接ADEBC的延長線上,連接AE,∠E=2CAD,下列結(jié)論:

ADBC;

②∠E=BAC;

CE=2CD;

AE=BE

其中正確的個數(shù)是( 。

A.1B.2C.3D.4

【答案】C

【解析】

等腰三角形的性質(zhì),“三線合一”,頂角的平分線,底邊的高和底邊上的中線,三條線互相重合便可推得.

解:①∵在△ABC中,AB=AC,DBC的中點,

ADBC;

②∵在△ABC中,AB=AC,DBC的中點,

∴∠BAC=2CAD,

∵∠E=2CAD

∴∠E=BAC;

③無法證明CE=2CD;

④∵在中,AB=AC,

∴∠B=ACB

∵∠ACB=E+CAE,∠E=BAC,

∴∠B=EAB,

AE=BE

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】一家用電器開發(fā)公司研制出一種新型電子產(chǎn)品,每件的生產(chǎn)成本為元,按定價元出售,每月可銷售萬件.為了增加銷量,公司決定采取降價的辦法,經(jīng)市場調(diào)研,每降價元,月銷售量可增加萬件.

(1)求出月銷售量(萬件)與銷售單價(元)之間的函數(shù)關(guān)系式(不必寫的取值范圍);

(2)求出月銷售利潤(萬元)(利潤售價-成本價)與銷售單價(元)之間的函數(shù)關(guān)系式(不必寫的取值范圍);

(3)請你通過(2)中的函數(shù)關(guān)系式及其大致圖象幫助公司確定產(chǎn)品的銷售單價范圍,使月銷售利潤不低于萬元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DBAC,且DB=ACEAC的中點,

1)求證:BC=DE

2)連接AD、BE,若要使四邊形DBEA是矩形,則給△ABC添加什么條件,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標中,反比例函數(shù)y=(x>0)的圖象經(jīng)過點A(1,4),B(a,b),其中a>1.過點Ax軸垂線,垂足為C,過點By軸垂線,垂足為D,ACBD交于點E,連接AD,DC,CB.

(1)求k的值;

(2)求證:DCAB;

(3)當ADBC時,求直線AB的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為半圓O的在直徑,AD、BC分別切⊙OA、B兩點,CD⊙O于點E,連接OD、OC,下列結(jié)論:①∠DOC=90°,②AD+BC=CD,④ODOC=DEEC,,正確的有( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在坐標平面內(nèi),點O是坐標原點,A06),B2,0),且∠OBA=60°,將△OAB沿直線AB翻折,得到△CAB,點O與點C對應(yīng).

1)求點C的坐標:

2)動點P從點O出發(fā),以2個單位長度/秒的速度沿線段OA向終點A運動,設(shè)△POB的面積為SS≠0),點P的運動時間為t秒,求St的關(guān)系式,并直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某家電商場計劃用9萬元從生產(chǎn)廠家購進50臺電視機,已知該廠家生產(chǎn)3種不同型號的電視機,出廠價分別為A種每臺1500元,B種每臺2100元,C種每臺2500元.

1)若家電商場同時購進兩種不同型號的電視機共50臺,用去9萬元,請你計算一下商場有哪幾種進貨方案?

2)若商場銷售一臺A種電視機可獲利150元,銷售一臺B種電視機可獲利200元,銷售一臺C種電視機可獲利250元,在同時購進兩種不同型號的電視機方案中,為了使銷售時獲利最多,應(yīng)選擇哪種方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列游戲?qū)﹄p方公平的是(

A. 隨意轉(zhuǎn)動被等分成個扇形,且分別均勻涂有紅、黃、綠三種顏色的轉(zhuǎn)盤,若指針指向綠色區(qū)域,則小明勝,否則小亮勝

B. 從一個裝有個紅球,個黃球和個黑球(這些球除顏色外完全相同)的袋中任意摸出一個球,若是紅球,則小明勝,否則小亮勝

C. 投擲一枚均勻的正方體形狀的骰子,若偶數(shù)點朝上,則小明勝,若是奇數(shù)點朝上,則小亮勝

D. 從分別標有數(shù),,,,的五張紙條中,任意抽取一張,若抽到的紙條所標的數(shù)字為偶數(shù),則小明勝,若抽到的紙條所標的數(shù)字為奇數(shù),則小亮勝

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為參加學校藝術(shù)節(jié)閉幕演出,八年級一班欲租用男、女演出服裝若干套以供演出時使用,已知4套男裝和6套女裝租用一天共需租金490元,6套男裝和10套女裝租用一天共需790元.

1)租用男裝、女裝一天的價格分別是多少?

2)由于演出時間錯開租用高峰時段,男裝、女裝一天的租金分別給予9折和8折優(yōu)惠,若該班演出團由5名男生和12名女生組成,求在演出當天該班租用服裝實際支付的租金是多少?

查看答案和解析>>

同步練習冊答案