如圖,把△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)25°,得到△A′B′C′,A′B′分別交AC、AB于點(diǎn)D、E,若∠A′DC=80°,則∠A=______°.
∵把△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)25°,得到△A′B′C′,
∴∠ACA′=25°,∠A=∠A′,
∵∠A′DC=80°,
∴∠A=∠A′=180°-∠ACA′-∠A′DC=180°-25°-80°=75°.
故答案為:75.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-1,2),B(-3,4),C(-2,9).
(1)畫出△ABC,并求出AC所在直線的解析式.
(2)畫出△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到的△A1B1C1,并求出△ABC在上述旋轉(zhuǎn)過程中掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,P是正方形ABCD內(nèi)一點(diǎn),將△ABP繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)90°至△CBP′,則PB=3,則PP′的長是( 。
A.3
2
B.3
3
C.3D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知扇形OAB的圓心角為72°,半徑為10,將它沿著箭頭所示的方向無滑動(dòng)滾動(dòng)到扇形O′A′B′位置時(shí),則點(diǎn)O到點(diǎn)O′所經(jīng)過的路徑的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,邊長為
3
的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°到正方形AB′C′D′,圖中陰影部分的面積為( 。
A.
3
2
B.3-
3
C.
3
D.3-
3
3
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

己知:正方形ABCD.
(1)如圖①,點(diǎn)E、點(diǎn)F分別在邊AB和AD上,且AE=AF.此時(shí),線段BE、DF的數(shù)量關(guān)系和位置關(guān)系分別是什么?請(qǐng)直接寫出結(jié)論.
(2)如圖②,等腰直角三角形FAE繞直角頂點(diǎn)A順時(shí)針旋轉(zhuǎn)∠α,當(dāng)0°<α<90°時(shí),連接BE、DF,此時(shí)(1)中的結(jié)論是否成立,如果成立,請(qǐng)證明;如果不成立,請(qǐng)說明理由.
(3)如圖③,等腰直角三角形FAE繞直角頂點(diǎn)A順時(shí)針旋轉(zhuǎn)∠α,當(dāng)90°<α<180°時(shí),連接BD、DE、EF、FB,得到四邊形BDEF,則順次連接四邊形BDEF各邊中點(diǎn)所組成的四邊形是什么特殊四邊形?請(qǐng)直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AMDN,直線L與AM、DN分別交于點(diǎn)B、C.在線段BC上取一點(diǎn)P,直線l繞點(diǎn)P旋轉(zhuǎn),寫出變化過程中,直線l與AD、AM、DN圍成的圖形的名稱.(至少寫出三個(gè))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD是正方形,△ADF按順時(shí)針方向旋轉(zhuǎn)一定角度后得到△ABE,若AF=4.AB=7.
(1)旋轉(zhuǎn)中心為______;旋轉(zhuǎn)角度為______;
(2)求DE的長度;
(3)指出BE與DF的關(guān)系如何?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

將兩塊含30°角且大小相同的直角三角板如圖1擺放.

(1)將圖1中△A1B1C繞點(diǎn)C順時(shí)針旋轉(zhuǎn)45°得圖2,點(diǎn)P1是A1C與AB的交點(diǎn),求證:CP1=
2
2
AP1;
(2)將圖2中△A1B1C繞點(diǎn)C順時(shí)針旋轉(zhuǎn)30°到△A2B2C(如圖3),點(diǎn)P2是A2C與AB的交點(diǎn).線段CP1與P1P2之間存在一個(gè)確定的等量關(guān)系,請(qǐng)你寫出這個(gè)關(guān)系式并說明理由;
(3)將圖3中線段CP1繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°到CP3(如圖4),連接P3P2,求證:P3P2⊥AB.

查看答案和解析>>

同步練習(xí)冊(cè)答案