先化簡,再求值:
x+1
x
x2-3x
x2+2x+1
-
x
x+1
,其中x=
3
-1
考點:分式的化簡求值
專題:計算題
分析:原式第一項約分后,利用同分母分式的減法法則計算得到最簡結果,將x的值代入計算即可求出值.
解答:解:原式=
x+1
x
x(x-3)
(x+1)2
-
x
x+1

=
x-3
x+1
-
x
x+1

=
-3
x+1
,
當x=
3
-1時,原式=
-3
3
+1-1
=-
3
點評:此題考查了分式的化簡求值,熟練掌握運算法則是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,AB是⊙O的直徑,AB=6,D是⊙O上的動點(不同于A、B),過O作OC∥AD交過B點⊙O的切線于點C.
(1)求證:CD與⊙O相切;
(2)設AD=x,OC=y,求y關于x的函數(shù)關系式;
(3)當AD=2時,求sin∠ACO的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的一元一次不等式組
x+3>a
x-1<b
的整數(shù)解是0和1,求a、b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

解不等式組
3x+1<2(x+2)
-
1
3
x≤
5
3
x+2
,并在所給的數(shù)軸上表示出其解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x,y的方程組
x-2y=3
2x+y=m
的解滿足不等式
1
2
x+y≤3,求數(shù)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

先化簡,再求值
x2-2x+1
x-2
÷(x+2+
3
x-2
),其中x=
2
-1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

先化簡,后求值:5(m+n)(m-n)-2(m+n)2-3(m-n)2,其中m=-2,n=
1
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某企業(yè)設計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進行試銷.據市場調查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.
(1)求出每天的銷售利潤y(元)與銷售單價x(元)之間的函數(shù)關系式;
(2)求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?
(3)如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應控制在什么范圍內?(每天的總成本=每件的成本×每天的銷售量)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

閱讀下面材料
小明遇到這樣一個問題;如圖①,在邊長為a(a>2)的正方形ABCD各邊上分別截取AE=BF=CG=DH=1,當∠AFQ=∠BGM=∠CHN=∠DEP=45°時,求正方形MNPQ的面積.
小明發(fā)現(xiàn),分別延長QE,MF,NG,PH交FA,GB,HC,ED的延長線于點R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四個全等的等腰直角三角形(如圖②)
請回答:
(Ⅰ)如圖②,AR的長為
 

(Ⅱ)若將上述四個等腰直角三角形拼成一個新的正方形(無縫隙不重疊),則這個新正方形的邊長為
 
;
參考小明思考問題的方法,解決問題:
如圖③,在等邊△ABC各邊上分別截取AD=BE=CF,再分別過點D,E,F(xiàn)作BC,AC,AB的垂線,得到等邊△RPQ.若S△RPQ=
3
3
,則AD的長為
 

查看答案和解析>>

同步練習冊答案