【題目】已知(m 3)x2 3x + 1 = 0是關(guān)于x的一元二次方程,則m的取值范圍是______

【答案】m≠3

【解析】

根據(jù)一元二次方程的定義:未知數(shù)的最高次數(shù)是2;二次項系數(shù)不為0,由這兩個條件得到相應(yīng)的關(guān)系式,再求解即可.

由題意,得

m-3≠0

解得m≠3,

故答案為:m≠3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

如圖1,一枚質(zhì)地均勻的正四面體骰子,它有四個面并分別標(biāo)有數(shù)字1,2,34.

1 2

23題圖

如圖2,正方形ABCD頂點處各有一個圈.跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子著地一面上的數(shù)字是幾,就沿正方形的邊順時針方向連續(xù)跳幾個邊長.

如:若從圖A起跳,第一次擲得3,就順時針連續(xù)跳3個邊長,落到圈D;若第二次擲得2,就從D開始順時針連續(xù)跳2個邊長,落到圈B……

設(shè)游戲者從圈A起跳.

1)嘉嘉隨機擲一次骰子,求落回到圈A的概率P1

2)淇淇隨機擲兩次骰子,用列表法求最后落回到圈A的概率P2,并指出她與嘉嘉落回到圈A的可能性一樣嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點P1(a,3)和P2(4,b)關(guān)于y軸對稱,則(ab)2017的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點E,F(xiàn)分別在AD,BC上,將紙片ABCD沿直線EF折疊,點C落在AD上的一點H處,點D落在點G處,有以下四個結(jié)論:

四邊形CFHE是菱形;

EC平分DCH;

線段BF的取值范圍為3BF4;

當(dāng)點H與點A重合時,EF=2

以上結(jié)論中,你認為正確的有( )個.

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

如圖,把EFP放置在菱形ABCD中,使得頂點E,F(xiàn),P分別在線段AB,AD,AC上,已知EP=FP=6,EF=,BAD=60°,且AB>

EPF的大;

AP=8,求AE+AF的值;

EFP的三個頂點E,F,P分別在線段AB,AD,AC上運動,請直接寫出AP長的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寫出一個過點(0,3),且函數(shù)值y隨自變量x的增大而減小的一次函數(shù)關(guān)系式: . (填上一個答案即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,矩形ABCD中,AB=4cm,AD=2AB,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O.

(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長;
(2)如圖2,動點P、Q分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運動一周,即點P自A→F→B→A停止,點Q自C→D→E→C停止.在運動過程中,
①已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒.當(dāng)A、C、P、Q四點為頂點的四邊形是平行四邊形時,求t的值;
②若點P、Q的速度分別為v1、v2(cm/s),點P、Q的運動路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點為頂點的四邊形是平行四邊形,試探究a與b滿足的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果3x=4+2x,那么x=_______,理由:根據(jù)等式的性質(zhì)______,在等式兩邊_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(a+b)(a﹣b)﹣(a﹣b)2

查看答案和解析>>

同步練習(xí)冊答案