四邊形OABC在平面直角坐標(biāo)系中位置如圖所示,點(diǎn)A、B、C的坐標(biāo)分別為A(10,0)、B(4,8)、C(0,8),動(dòng)點(diǎn)E自A點(diǎn)出發(fā)以每秒2個(gè)單位的速度沿A→B→C→O的路線移動(dòng),同時(shí),點(diǎn)D以每秒1個(gè)單位的速度從O出發(fā)沿著射線OA方向運(yùn)動(dòng),點(diǎn)M為OD的中點(diǎn),當(dāng)點(diǎn)D與A重合時(shí)停止一切運(yùn)動(dòng).
(1)當(dāng)點(diǎn)D與A重合時(shí),點(diǎn)E的坐標(biāo)是
(0,2)
(0,2)
;
(2)設(shè)△MDE的面積為S,運(yùn)動(dòng)時(shí)間為t,請(qǐng)寫出S與t的函數(shù)關(guān)系式,指出自變量的取值范圍,并求出S的最大值.
分析:(1)求出AB、BC的長度,然后計(jì)算出點(diǎn)D與點(diǎn)A重合需要的時(shí)間t,再由點(diǎn)E的運(yùn)動(dòng)速度即可得出點(diǎn)E經(jīng)過時(shí)間t后的位置.
(2)分別討論點(diǎn)E位于AB、BC、OC上的情況,依次表示出S關(guān)于t的表達(dá)式,結(jié)合t的范圍得出S的最大值,然后比較即可得出S的最大值.
解答:解:(1)當(dāng)點(diǎn)D與點(diǎn)A重合時(shí),t=10s,則點(diǎn)E運(yùn)動(dòng)的路程=2×10=20,
過點(diǎn)B作BH⊥OA于點(diǎn)H,
則AB=
BH2+AH2
=10,
又∵BC=4,OC=8,
故點(diǎn)E所到的位置為(0,2);


(2)①當(dāng)0<t≤5時(shí),過點(diǎn)B作BH⊥OA,過點(diǎn)E作EF⊥OA于點(diǎn)F,如圖1所示:
則BH=8,AH=6,
易證△EFA∽△BHA,EF=2t×
4
5
,S=
1
2
×
t
2
×2t×
4
5
=
2
5
t2
,
∵當(dāng)t>0時(shí),S隨t的增大而增大,
∴t=5時(shí),S=10.
②當(dāng)5<t≤7時(shí),如圖2所示:
S=
1
2
×
t
2
×8=2t
,
當(dāng)t=7時(shí),S=14;
③當(dāng)7<t≤10時(shí),如圖3所示,
S=
1
2
×
t
2
×(22-2t)=-
1
2
t2+
11
2
t

當(dāng)t>
11
2
時(shí),S隨t的增大而減小,
∴t=7時(shí),S=14;
綜上可得:S=
2
5
t2(0<t≤5)
2t(5<t≤7)
-
1
2
t2+
11
2
t(7<t≤10)
,
當(dāng)t=7時(shí),S取得最大,最大值為14.
點(diǎn)評(píng):本題考查了相似形綜合題,涉及了動(dòng)點(diǎn)問題,解答本題關(guān)鍵是討論點(diǎn)E的位置,注意討論t的取值范圍,繼而確定S關(guān)于t的表達(dá)式,要數(shù)形結(jié)合進(jìn)行思考,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•合山市模擬)矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,其中OA=5,AB=2,拋物線y=-x2+3x的圖象與BC交于D、E兩點(diǎn).
(1)求DE的長
DE=1
DE=1
;
(2)M是BC上的動(dòng)點(diǎn),若OM⊥AM,求點(diǎn)M的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)Q,使以D、O、Q、M為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直角梯形紙片OABC在平面直角坐標(biāo)系中的位置如圖1所示,四個(gè)頂點(diǎn)的坐標(biāo)分別為O(0,0),A(10,0),B(8,2
3
),C(0,2
3
),點(diǎn)T在線段OA上(不與線段點(diǎn)重合),將紙片沿過T點(diǎn)的直線折疊,使點(diǎn)A落在射線AB上(記為點(diǎn)A'),折痕TP與射線AB交于點(diǎn)P,設(shè)點(diǎn)T的橫坐標(biāo)為t,折疊后紙片重疊部分(圖2中的陰影部分)的面積為S;
(1)直接寫出∠OAB的度數(shù);
(2)當(dāng)紙片重疊部分的圖形是四邊形時(shí),直接寫出t的取值范圍;
(3)求S關(guān)于t的解析式及S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

平行四邊形OABC在平面直角坐標(biāo)系中的位置如圖所示,∠AOC=45°,OA=2,OC=
2
,則點(diǎn)B的坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

平行四邊形OABC在平面直角坐標(biāo)系中的位置如圖所示,∠AOC=45°,數(shù)學(xué)公式,則點(diǎn)B的坐標(biāo)是


  1. A.
    (3,1)
  2. B.
    (1,3)
  3. C.
    (2,1)
  4. D.
    (1,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案