直線(xiàn)y=kx+b(k≠0)與坐標(biāo)軸分別交于A、B兩點(diǎn),OA、OB的長(zhǎng)分別是方程x2-14x+48=0的兩根精英家教網(wǎng)(OA>OB),動(dòng)點(diǎn)P從O點(diǎn)出發(fā),沿路線(xiàn)O?B?A以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),到達(dá)A點(diǎn)時(shí)運(yùn)動(dòng)停止.
(1)直接寫(xiě)出A、B兩點(diǎn)的坐標(biāo);
(2)設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒),△OPA的面積為S,求S與t之間的函數(shù)關(guān)系式(不必寫(xiě)出自變量的取值范圍);
(3)當(dāng)S=12時(shí),直接寫(xiě)出點(diǎn)P的坐標(biāo),此時(shí),在坐標(biāo)軸上是否存在點(diǎn)M,使以O(shè)、A、P、M為頂點(diǎn)的四邊形是梯形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
分析:(1)解方程x2-14x+48=0求出方程的兩根,就得到A,B的坐標(biāo);
(2)當(dāng)點(diǎn)P在OB上運(yùn)動(dòng)時(shí),OP1=t,即三角形OA邊上的高是OP,則面積就可以求出;當(dāng)點(diǎn)P在BA上運(yùn)動(dòng)時(shí),作P2D⊥OA于點(diǎn)D,根據(jù)△AP2D∽△ABO就可以表示出P2D,則△OP2A的面積就可以表示出來(lái),從而得到函數(shù)解析式;
(3)本題應(yīng)分當(dāng)點(diǎn)P在OB上運(yùn)動(dòng)和當(dāng)點(diǎn)P在BA上運(yùn)動(dòng)兩種情況進(jìn)行討論,兩種情況下對(duì)應(yīng)的函數(shù)解析式已經(jīng)求出,可以求出相應(yīng)的t的值,進(jìn)而求出點(diǎn)的坐標(biāo).
解答:解:(1)解方程x2-14x+48=0得:x1=8,x2=6,
∴A(8,0),B(0,6);

(2)∵OA=8,OB=6,
∴AB=10,
當(dāng)點(diǎn)P在OB上運(yùn)動(dòng)時(shí),OP1=t,
S=
1
2
OA×OP1=
1
2
×8×t=4t

當(dāng)點(diǎn)P在BA上運(yùn)動(dòng)時(shí),作P2D⊥OA于點(diǎn)D,精英家教網(wǎng)
P2D
BO
=
AP2
AB
,
∵AP2=6+10-t=16-t,
P2D=
48-3t
5
,
S=
1
2
×OA×P2D=
1
2
×8×
48-3t
5
=-
12
5
t+
192
5
;

(3)當(dāng)4t=12時(shí),t=3,P1(0,3),
此時(shí),過(guò)△AOP各頂點(diǎn)作對(duì)邊的平行線(xiàn),與坐標(biāo)軸無(wú)第二個(gè)交點(diǎn),所以點(diǎn)M不存在;
當(dāng)-
12
5
t+
192
5
=12
時(shí),t=11,P2(4,3),
此時(shí),M1(0,3)、M2(0,-6).
點(diǎn)評(píng):本題是一個(gè)綜合應(yīng)用題,用到了相似三角形的性質(zhì),方程的解法,是一個(gè)函數(shù)與三角形的綜合問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知如圖示直線(xiàn)y=kx+b與反比例函數(shù)y=
6
x
(x>0)相交于A(1,m)和B(n,2)兩點(diǎn).
(1)求一次函數(shù)y=kx+b的函數(shù)解析式;
(2)將一次函數(shù)y=kx+b的圖象沿x軸負(fù)方向平移2個(gè)單位后,試問(wèn)新圖象與反比例函數(shù)y=
6
x
的圖象是否有交點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,設(shè)直線(xiàn)y=kx(k<0)與雙曲線(xiàn)y=-
5x
相交于A(x1,y1),B(x2,y2)兩點(diǎn),
則5x1y2-3x2y1的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,平面直角坐標(biāo)系xOy中,直線(xiàn)y=kx+b(k≠0)與直線(xiàn)y=mx(m≠0)交于點(diǎn)A(-2,4).
(1)求直線(xiàn)y=mx(m≠0)的解析式;
(2)若直線(xiàn)y=kx+b(k≠0)與另一條直線(xiàn)y=2x交于點(diǎn)B,且點(diǎn)B的橫坐標(biāo)為-4,求△ABO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

平面直角坐標(biāo)系中,原點(diǎn)到直線(xiàn)y=kx+b的距離公式為d=
|b|
k2+1
,根據(jù)這個(gè)公式解答下列問(wèn)題:
(1)原點(diǎn)到直線(xiàn)y=-
4
3
x+4的距離為
 

(2)若原點(diǎn)到y(tǒng)=(1-k)x+2k的距離為該直線(xiàn)與y軸交點(diǎn)到原點(diǎn)距離的一半,則k=
 

(3)若(1)中的直線(xiàn)與y軸、x軸交于A、B兩點(diǎn),直線(xiàn)AC與x軸交于C點(diǎn),若∠ABC的鄰補(bǔ)角是∠ACB的鄰補(bǔ)角的2倍,求原點(diǎn)到直線(xiàn)AC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

直線(xiàn)y=kx+4分別于x軸、y軸相交于點(diǎn)A、B,O是坐標(biāo)原點(diǎn),A點(diǎn)的坐標(biāo)為(4,0),P是OB上(O、B兩點(diǎn)除外)的一點(diǎn),過(guò)P作PC⊥y軸交直線(xiàn)AB于C,過(guò)點(diǎn)C作CD⊥x軸,垂足為D,設(shè)線(xiàn)段PC的長(zhǎng)為l,點(diǎn)P的坐標(biāo)為(0,m)
(1)求k的值;
(2)如果點(diǎn)P在線(xiàn)段OB(O、B兩點(diǎn)除外)上移動(dòng),求l于m的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到線(xiàn)段OB的中點(diǎn)時(shí),四邊形OPCD為正方形,將正方形OPCD沿著x軸的正方向移動(dòng),設(shè)平移的距離為a(0<a<4),正方形OPCD于△AOB重疊部分的面積為S.試求S與a的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案