在△ABC中,AB=AC.
(1)如圖,若點P是BC邊上的中點,連接AP.求證:BP•CP=AB2-AP2;

(2)如圖,若點P是BC邊上任意一點,上面(1)的結(jié)論還成立嗎?若成立,請證明、若不成立,請說明理由;

(3)如圖,若點P是BC邊延長線上一點,線段AB,AP,BP,CP之間有什么樣的數(shù)量關(guān)系?畫出圖形,寫出你的結(jié)論.(不必證明)

解:(1)∵AB=AC,P是BC的中點,∴AP⊥BC
∴AB2-AP2=BP2=BP•CP;

(2)如圖所示:
成立,過點A作AD⊥BC于D,∵AB=AC,∴BD=CD
在Rt△ABD中,AB2=AD2+BD2
在Rt△APD中,AP2=AD2+PD2
①-②得:AB2-AP2=BD2-PD2=(BD+PD)(BD-PD)=PC•BP;

(3)如圖所示:
如右圖,P是BC延長線任一點,連接AP,并做AD⊥BC,交BC于D,
∵AB=AC,AD⊥BC,
∴BD=CD,
在Rt△ABD中,AB2=AD2+BD2,
在Rt△ADP中,AP2=AD2+DP2,
∴AP2-AB2=(AD2+BD2)-(AD2+DP2)=PD2-BD2,
又∵BP=BD+DP,CP=DP-CD=DP-BD,
∴BP•CP=(BD+DP)(DP-BD)=DP2-BD2,
∴AP2-AB2=BP•CP.
結(jié)論:AP2-AB2=BP•CP.
分析:(1)根據(jù)勾股定理和等腰三角形的性質(zhì),可知BP=CP,AB2-AP2=BP×BP;
(2)成立,過點A作AD⊥BC于D,依然利用勾股定理,借助于平方差公式即可證明;
(3)畫出圖形,利用勾股定理,AP2-AB2=DP2-BD2=2DC•CP+CP2=BC•CP+CP2=BP•CP.
點評:本題主要考查勾股定理的應(yīng)用,以及等腰三角形性質(zhì)的掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寧德質(zhì)檢)如圖,在△ABC中,AB=AC=6,點0為AC的中點,OE⊥AB于點E,OE=
32
,以點0為圓心,OA為半徑的圓交AB于點F.
(1)求AF的長;
(2)連結(jié)FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•襄陽)如圖,在△ABC中,AB=AC,AD⊥BC于點D,將△ADC繞點A順時針旋轉(zhuǎn),使AC與AB重合,點D落在點E處,AE的延長線交CB的延長線于點M,EB的延長線交AD的延長線于點N.
求證:AM=AN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,把△ABC繞著點A旋轉(zhuǎn)至△AB1C1的位置,AB1交BC于點D,B1C1交AC于點E.求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)如圖,在△ABC中,AB是⊙O的直徑,∠B=60°,∠C=70°,則∠BOD的度數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•吉林)如圖,在△ABC中,AB=AC,D為邊BC上一點,以AB,BD為鄰邊作?ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習(xí)冊答案