【題目】某校學(xué)生會決定從三名學(xué)生會干事中選拔一名干事,對甲、乙、丙三名候選人進(jìn)行了筆試和面試,三人的測試成績?nèi)缦卤硭荆?/span>
測試項目 | 測試成績/分 | ||
甲 | 乙 | 丙 | |
筆試 | 75 | 80 | 90 |
面試 | 93 | 70 | 68 |
根據(jù)錄用程序,學(xué)校組織200名學(xué)生采用投票推薦的方式,對三人進(jìn)行民主測評,三人得票率(沒有棄權(quán),每位同學(xué)只能推薦1人)如扇形統(tǒng)計圖所示,每得一票記1分.
(1)扇形統(tǒng)計圖中= , 分別計算三人民主評議的得分;
(2)根據(jù)實際需要,學(xué)校將筆試、面試、民主評議三項得分按4:3:3的比例確定個人成績,得分最高者將被選中,通過計算說明三人中誰被選中?
【答案】(1)a=25;甲民主評議的得分50(分);乙民主評議的得分是80(分);丙民主評議的得分是: 70(分)(2)丙會被選中.
【解析】試題分析:(1)用1-40%-35%即可得到a的值,再分別用200乘以三人的得票率,求出三人民主評議的得分各是多少即可;
(2)根據(jù)加權(quán)平均數(shù)的計算方法列式計算,分別求出三人的得分各是多少;然后比較大小,判斷出三人中誰的得分最高即可.
試題解析:(1)a%=1-40%-35%,所以a=25,
甲民主評議的得分是:200×25%=50(分);
乙民主評議的得分是:200×40%=80(分);
丙民主評議的得分是:200×35%=70(分);
(2)甲的成績是:(75×4+93×3+50×3)÷(4+3+3)=729÷10=72.9(分),
乙的成績是:(80×4+70×3+80×3)÷(4+3+3)=770÷10=77(分),
丙的成績是:(90×4+68×3+70×3)÷(4+3+3)=774÷10=77.4(分),
∵77.4>77>72.9,∴丙的得分最高,將被選中.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度數(shù).
小明的思路是:過P作PE∥AB,通過平行線性質(zhì)來求∠APC.
(1)按小明的思路,易求得∠APC的度數(shù)為_____度;
(2)問題遷移:如圖2,AB∥CD,點P在射線OM上運動,記∠PAB=α,∠PCD=β,當(dāng)點P在B、D兩點之間運動時,問∠APC與α、β之間有何數(shù)量關(guān)系?請說明理由;
(3)在(2)的條件下,如果點P在B、D兩點外側(cè)運動時(點P與點O、B、D三點不重合),請直接寫出∠APC與α、β之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)圖像經(jīng)過原點,求m的值;
(2)若這個函數(shù)是一次函數(shù),且與y軸交點為(0,3),求該一次函數(shù)圖像與兩坐標(biāo)軸圍成的三角形的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:直線AB∥CD,點M,N分別在直線AB,CD上,點E為平面內(nèi)一點.
(1)如圖1,∠BME,∠E,∠END的數(shù)量關(guān)系為 (直接寫出答案);
(2)如圖2,∠BME=m°,EF平分∠MEN,NP平分∠END,EQ∥NP,求∠FEQ的度數(shù)(用用含m的式子表示)
(3)如圖3,點G為CD上一點,∠BMN=n·∠EMN,∠GEK=n·∠GEM,EH∥MN交AB于點H,探究∠GEK,∠BMN,∠GEH之間的數(shù)量關(guān)系(用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(1)班所有學(xué)生參加2010年初中畢業(yè)生升學(xué)體育測試,根據(jù)測試評分標(biāo)準(zhǔn),將他們的成績進(jìn)行統(tǒng)計后分為A、B、C、D四等,并繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(未完成),請結(jié)合圖中所給信息解答下列問題:
(1)九年級(1)班參加體育測試的學(xué)生有 人;
(2)將條形統(tǒng)計圖補充完整;
(3)在扇形統(tǒng)計圖中,等級B部分所占的百分比是 ,等級C對應(yīng)的圓心角的度數(shù)為 ;
(4)若該校九年級學(xué)生共有850人參加體育測試,估計達(dá)到A級和B級的學(xué)生共有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一批名牌襯衫,平均每天可銷售20件,每件盈利40元.為了擴(kuò)大銷售,增加盈利,盡量減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價5元,商場平均每天可多售出10件.求:
(1)若商場每件襯衫降價4元,則商場每天可盈利多少元?
(2)若商場平均每天要盈利1200元,每件襯衫應(yīng)降價多少元?
(3)要使商場平均每天盈利1600元,可能嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某飲料廠開發(fā)了A、B兩種新型飲料,主要原料均為甲和乙,每瓶飲料中甲、乙的含量如下表所示.現(xiàn)用甲原料和乙原料各2800克進(jìn)行試生產(chǎn),計劃生產(chǎn)A、B兩種飲料共100瓶.設(shè)生產(chǎn)A種飲料x瓶,解析下列問題:
原料名稱 飲料名稱 | 甲 | 乙 |
A | 20克 | 40克 |
B | 30克 | 20克 |
(1)有幾種符合題意的生產(chǎn)方案寫出解析過程;
(2)如果A種飲料每瓶的成本為2.60元,B種飲料每瓶的成本為2.80元,這兩種飲料成本總額為y元,請寫出y與x之間的關(guān)系式,并說明x取何值會使成本總額最低?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD,AD∥BC.點P在直線CD上運動(點P和點C,D不重合,點P,A,B不在同一條直線上),若記∠DAP,∠APB,∠PBC分別為∠α,∠β,∠γ.
(1)如圖1,當(dāng)點P在線段CD上運動時,寫出∠α,∠β,∠γ之間的關(guān)系并說出理由;
(2)如圖2,如果點P在線段CD的延長線上運動,探究∠α,∠β,∠γ之間的關(guān)系,并說明理由.
(3)如圖3,BI平分∠PBC,AI交BI于點I,交BP于點K,且∠PAI:∠DAI=5:1,∠APB=20°,∠I=30°,求∠PAI的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,下列語句描述正確的是( 。
①若∠1=∠3,則AB∥DC;②若∠C+∠1+∠4=180°,則AD∥BC;③∠A=∠C,∠ABC=∠ADC,則AB∥DC;④若∠2=∠4,BD平分∠ABC,則BC=CD;⑤若AD∥BC,∠A=∠C,則AB∥DC.
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com