【題目】如圖,ABCD,BAC與∠DCA的平分線相交于點G,GEAC于點E,FAC上的一點,AF=FC,GHCDH.下列說法①AGCG;②∠BAG=CGE;SAFG=SCFG;④若∠EGH∶∠ECH=27,則∠EGH=40°.其中正確的有________

【答案】①②③④.

【解析】

靈活利用平行線的性質、等角的余角相等、四邊形的內角和、三角形內角和定理、三角形的面積公式、角平分線的性質進行分析.

解:①中,根據(jù)兩條直線平行,同旁內角互補,得∠BAC+ACD=180°,

再根據(jù)角平分線的概念,得∠GAC+GCA=BAC+ACD=×180°=90°,

再根據(jù)三角形的內角和是180°,得AGCG;

②中,根據(jù)等角的余角相等,得∠CGE=GAC,故∠BAG=CGE

③中,根據(jù)三角形的面積公式,

AF=CF,∴SAFG=SCFG;

④中,根據(jù)題意得:在四邊形GECH中,∠EGH+ECH=180°.

又∠EGH:∠ECH=27,則∠EGH=180°×=40°

故上述四個都是正確的.

故答案為:①②③④.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,正方形CEFG繞正方形ABCD的頂點C旋轉,連接AF,點MAF中點.

1)當點GBC上時,如圖2,連接BMMG,求證:BM=MG;

2)在旋轉過程中,當點B、G、F三點在同一直線上,若AB=5CE=3,則MF=    

3)在旋轉過程中,當點G在對角線AC上時,連接DG、MG,請你畫出圖形,探究DGMG的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,四邊形 ABCD,A=90°,AB=3m,BC=12m,CD=13mDA=4m

(1)求證:BDCB;

(2)求四邊形 ABCD 的面積;

(3)如圖 2,以 A 為坐標原點,以 AB、AD所在直線為 x軸、y軸建立直角坐標系,

Py軸上,若 SPBD=S四邊形ABCD, P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1)(﹣3)﹣(﹣2+(﹣4);

2)﹣10+14+168;

3(4)×(5)90÷(15);

4)﹣23÷×(﹣2;

5)(+×(﹣36);

6)﹣14×[2﹣(﹣32]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為更有效地開展“線上教學”工作,某市就學生參與線上學習的工具進行了電子問卷調查,并將調查結果繪制成圖1和圖2所示的統(tǒng)計圖(均不完整).請根據(jù)統(tǒng)計圖中提供的信息,解答下列問題:

1)本次調查的總人數(shù)是   人;

2)請將條形統(tǒng)計圖補充完整;

3)在扇形統(tǒng)計圖中表示觀點B的扇形的圓心角度數(shù)為   度;

4)在扇形統(tǒng)計圖中表示觀點E的百分比是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,連接BD,點OBD的中點,若M、N是邊AD上的兩點,連接MO、NO,并分別延長交邊BC于兩點M′、N′,則圖中的全等三角形共有(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)分別交y軸、x 軸于A、B兩點,拋物線過A、B兩點。(1)求這個拋物線的解析式;(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N。求當t 取何值時,MN有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)閱讀理解:

如圖①,在ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.

解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或將ACD繞著點D逆時針旋轉180°得到EBD),把AB、AC,2AD集中在ABE中,利用三角形三邊的關系即可判斷.

中線AD的取值范圍是 ;

(2)問題解決:

如圖②,在ABC中,D是BC邊上的中點,DEDF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CFEF;

(3)問題拓展:

如圖③,在四邊形ABCD中,B+D=180°,CB=CD,BCD=140°,以為頂點作一個70°角,角的兩邊分別交AB,AD于E、F兩點,連接EF,探索線段BE,DF,EF之間的數(shù)量關系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級數(shù)學興趣小組的同學進行社會實踐活動時,想利用所學的解直角三角形的知識測量某塔的高度,他們先在點用高米的測角儀測得塔頂的仰角為然后沿方向前行m到達點,處測得塔頂的仰角為.請根據(jù)他們的測量數(shù)據(jù)求此塔的高.結果精確到m參考數(shù)據(jù) ,

查看答案和解析>>

同步練習冊答案