已知拋物線與x軸相交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)的左側(cè)),頂點(diǎn)為P.
(1)求A、B、P三點(diǎn)的坐標(biāo);
(2)在如圖所示的直角坐標(biāo)系內(nèi)畫出此拋物線的簡圖并根據(jù)簡圖,寫出當(dāng)x取何值時(shí),函數(shù)值y大于零;
(3)確定此拋物線與直線y=-2x+6公共點(diǎn)的個(gè)數(shù),并說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖, 已知拋物線與y軸相交于C,與x軸相交于A、B,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)C的坐標(biāo)為(0,-1).
(1)求拋物線的解析式;
(2)點(diǎn)E是線段AC上一動點(diǎn),過點(diǎn)E作DE⊥x軸于點(diǎn)D,連結(jié)DC,當(dāng)△DCE的面積最大時(shí),求點(diǎn)D的坐標(biāo);
(3)在直線BC上是否存在一點(diǎn)P,使△ACP為等腰三角形,若存在,求點(diǎn)P的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖, 已知拋物線與y軸相交于C,與x軸相交于A、B,點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)C的坐標(biāo)為(0,-3),拋物線的頂點(diǎn)為D.
1.求拋物線的解析式和頂點(diǎn)D的坐標(biāo)
2.二次函數(shù)的圖像上是否存在點(diǎn)P,使得S△PAB=8S△ABD?若存在,求出P點(diǎn)坐標(biāo);若不存在,請說明理由;
3.若拋物線的對稱軸與x軸交于E點(diǎn),點(diǎn)F在直線BC上,點(diǎn)M在的二次函數(shù)圖像上,如果以點(diǎn)F、M、D、E為頂點(diǎn)的四邊形是平行四邊形,請你求出符合條件的點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(2011福建龍巖,24, 13分)如圖,已知拋物線與x軸相交于A、B兩點(diǎn),其對稱軸為直線,且與x軸交于點(diǎn)D,AO=1.
(1) 填空:b=_______。c=_______,
點(diǎn)B的坐標(biāo)為(_______,_______):
(2) 若線段BC的垂直平分線EF交BC于點(diǎn)E,交x軸于點(diǎn)F.求FC的長;
(3) 探究:在拋物線的對稱軸上是否存在點(diǎn)P,使⊙P與x軸、直線BC都相切?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年山西省臨汾市九年級下學(xué)期第一次月考試卷(解析版) 題型:解答題
如圖, 已知拋物線與y軸相交于C,與x軸相交于A、B,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)C的坐標(biāo)為(0,-1).
(1)求拋物線的解析式;
(2)點(diǎn)E是線段AC上一動點(diǎn),過點(diǎn)E作DE⊥x軸于點(diǎn)D,連結(jié)DC,當(dāng)△DCE的面積最大時(shí),求點(diǎn)D的坐標(biāo);
(3)在直線BC上是否存在一點(diǎn)P,使△ACP為以AC為腰的等腰三角形,若存在,求點(diǎn)P的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com