【題目】如圖,正△ABC的邊長為2,以BC邊上的高AB1為邊作正△AB1C1 , △ABC與△AB1C1公共部分的面積記為S1;再以正△AB1C1邊B1C1上的高AB2為邊作正△AB2C2 , △AB1C1與△AB2C2公共部分的面積記為S2;…,以此類推,則Sn= . (用含n的式子表示)

【答案】n
【解析】解:∵等邊三角形ABC的邊長為2,AB1⊥BC,

∴BB1=1,AB=2,

根據(jù)勾股定理得:AB1= ,

∴S1= × ×( 2= 1;

∵等邊三角形AB1C1的邊長為 ,AB2⊥B1C1,

∴B1B2= ,AB1= ,

根據(jù)勾股定理得:AB2= ,

∴S2= × ×( 2= 2

依此類推,Sn= n

故答案為: n

由AB1為邊長為2的等邊三角形ABC的高,利用三線合一得到B1為BC的中點,求出BB1的長,利用勾股定理求出AB1的長,進而求出S1,同理求出S2,依此類推,得到Sn

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某課外小組的同學們在社會實踐活動中調查了20戶家庭某月的用電量,如下表所示:則這20戶家庭該月用電量的眾數(shù)和中位數(shù)分別是( 。

用電量(度)

120

140

160

180

200

戶數(shù)

2

3

6

7

2

A.76B.7,3C.180,160D.180170

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一枚質地均勻的正四面體骰子,它有四個面并分別標有數(shù)字,,,,如圖,正方形頂點處各有一個圈.跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子著地一面上的數(shù)字是幾,就沿正方形的邊順時針方向連續(xù)跳幾個邊長.如:若從圖起跳,第一次擲得,就順時針連續(xù)跳個邊長,落到圈;若第二次擲得,就從開始順時針連續(xù)跳個邊長,落到圈;設游戲者從圈起跳.

)嘉嘉隨機擲一次骰子,求落回到圈的概率

淇淇隨機擲兩次骰子,用列表法求最后落回到圈的概率,并指出她與嘉嘉落回到圈的可能性一樣嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】利用不等式的基本性質求下列不等式的解集,并寫出變形的依據(jù).

(1)若x+2016>2017,則x___________;

______________________

(2)若2x>-,則x____________;

__________________________

(3)若-2x>-,則x____________;

___________________________

(4)若->-1,則x_________.

_______________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某大樓頂部有一旗桿AB,甲乙兩人分別在相距6米的C、D兩處測得B點和A點的仰角分別是42°和65°,且C、D、E在一條直線上.如果DE=15米,求旗桿AB的長大約是多少米?(結果保留整數(shù))

(參考數(shù)據(jù):sin42°≈0.67,tan42°≈0.9,sin65°≈0.91,tan65°≈2.1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一個圓形的花園,其半徑為4米,現(xiàn)要擴大花園,將其半徑增加2米,這樣花園的面積將增加多少平方米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,其中A點坐標為(-1,0),點C(0,5),另拋物線經(jīng)過點(1,8),M為它的頂點.

(1)求拋物線的解析式;

(2)求出對稱軸和頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“龜兔首次賽跑”之后,輸了比賽的兔子沒有氣餒,總結反思后,和烏龜約定再賽一場.圖中的函數(shù)圖象刻畫了“龜兔再次賽跑”的故事(x表示烏龜從起點出發(fā)所行的時間,y1表示烏龜所行的路程,y2表示兔子所行的路程).有下列說法:
①“龜兔再次賽跑”的路程為1000米;
②兔子和烏龜同時從起點出發(fā);
③烏龜在途中休息了10分鐘;
④兔子在途中750米處追上烏龜.
其中正確的說法是 . (把你認為正確說法的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下面的證明.

已知,如圖所示,BCE,AFE是直線,

AB∥CD,∠1=∠2,∠3=∠4.

求證:AD∥BE

證明:∵ AB∥CD (已知)

∴ ∠4 =∠ ( )

∵ ∠3 =∠4 (已知)

∴ ∠3 =∠ ( )

∵ ∠1 =∠2 (已知)

∴ ∠1+∠CAF =∠2+ ∠CAF ( )

即:∠ =∠

∴ ∠3 =∠ ( )

∴ AD∥BE ( )

查看答案和解析>>

同步練習冊答案