【題目】如圖,中,與的平分線交于點(diǎn),過點(diǎn)作交于點(diǎn),交于點(diǎn),那么下列結(jié)論:
①是等腰三角形;②;
③若,;④.
其中正確的有( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
【答案】B
【解析】
根據(jù)角平分線的定義和平行線的性質(zhì)可得∠DBF =∠DFB,∠ECF=∠EFC,然后利用等角對(duì)等邊即可得出DB=DF,EF=EC,從而判斷①和②;利用三角形的內(nèi)角和定理即可求出∠ABC+∠ACB,然后利用角平分線的定義和三角形的內(nèi)角和定理即可求出∠BFC,從而判斷③;然后根據(jù)∠ABC不一定等于∠ACB即可判斷④.
解:∵與的平分線交于點(diǎn),
∴∠DBF=∠FBC,∠ECF=∠FCB
∵
∴∠DFB=∠FBC,∠EFC=∠FCB
∴∠DBF =∠DFB,∠ECF=∠EFC
∴DB=DF,EF=EC,
即是等腰三角形,故①正確;
∴DE=DF+EF= BD+CE,故②正確;
∵∠A=50°
∴∠ABC+∠ACB=180°-∠A=130°
∴∠FBC+∠FCB=(∠ABC+∠ACB)=65°
∴∠BFC=180°-(∠FBC+∠FCB)=115°,故③正確;
∵∠ABC不一定等于∠ACB
∴∠FBC不一定等于∠FCB
∴BF不一定等于CF,故④錯(cuò)誤.
正確的有①②③,共3個(gè)
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校260名學(xué)生參加植樹活動(dòng),要求每人植4-7棵,活動(dòng)結(jié)束后隨機(jī)抽查了若干名學(xué)生每人的植樹量,并分為四種類型,A:4棵;B:5棵;C:6棵;D:7棵,將各類的人數(shù)繪制成扇形圖(如圖甲)和條形圖(圖乙),回答下列問題:
(1)求這次抽查的學(xué)生數(shù);
(2)補(bǔ)全圖甲和圖乙;
(3)計(jì)算被抽查學(xué)生每人植樹量的平均數(shù),并估計(jì)這260名學(xué)生共植樹多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象過點(diǎn)A(4,1)與正比例函數(shù)()的圖象相交于點(diǎn)B(,3),與軸相交于點(diǎn)C.
(1)求一次函數(shù)和正比例函數(shù)的表達(dá)式;
(2)若點(diǎn)D是點(diǎn)C關(guān)于軸的對(duì)稱點(diǎn),且過點(diǎn)D的直線DE∥AC交BO于E,求點(diǎn)E的坐標(biāo);
(3)在坐標(biāo)軸上是否存在一點(diǎn),使.若存在請(qǐng)求出點(diǎn)的坐標(biāo),若不存在請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC中,AB=AC=6,BC=4,點(diǎn)D、E分別在邊AB、AC上,且AD=AE=1,連接DE、CD,點(diǎn)M、N、P分別是線段DE、BC、CD的中點(diǎn),連接MP、PN、MN.
(1)求證:△PMN是等腰三角形;
(2)將△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),
①如圖2,當(dāng)點(diǎn)D、E分別在邊AC兩側(cè)時(shí),求證:△PMN是等腰三角形;
②當(dāng)△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到第一次點(diǎn)D、E、C在一條直線上時(shí),請(qǐng)直接寫出此時(shí)BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】山西特產(chǎn)專賣店銷售核桃,其進(jìn)價(jià)為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請(qǐng)回答:
(1)每千克核桃應(yīng)降價(jià)多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該店應(yīng)按原售價(jià)的幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)一次函數(shù)l1、l2的圖象如圖:
(1)分別求出l1、l2兩條直線的函數(shù)關(guān)系式;
(2)求出兩直線與y軸圍成的△ABP的面積;
(3)觀察圖象:請(qǐng)直接寫出當(dāng)x滿足什么條件時(shí),l1的圖象在l2的下方.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點(diǎn)P,小明說:“射線OP就是∠BOA的角平分線.”他這樣做的依據(jù)是( )
A.角平分線上的點(diǎn)到這個(gè)角兩邊的距離相等
B.角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上
C.三角形三條角平分線的交點(diǎn)到三條邊的距離相等
D.以上均不正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD垂直BC于點(diǎn)D,且AD=BC,BC上方有一動(dòng)點(diǎn)P滿足,則點(diǎn)P到B、C兩點(diǎn)距離之和最小時(shí),∠PBC的度數(shù)為( )
A.30°B.45°C.60°D.90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,AC=BC,E點(diǎn)為射線CB上一動(dòng)點(diǎn),連結(jié)AE,作AF⊥AE且AF=AE.
(1)如圖1,過F點(diǎn)作FD⊥AC交AC于D點(diǎn),求證:FD=BC;
(2)如圖2,連結(jié)BF交AC于G點(diǎn),若AG=3,CG=1,求證:E點(diǎn)為BC中點(diǎn);
(3)當(dāng)E點(diǎn)在射線CB上,連結(jié)BF與直線AC交于G點(diǎn),若BC=4,BE=3,則= (直接寫出結(jié)果)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com