(1)證明:∵△MBC是等邊三角形,
∴MB=MC,∠MBC=∠MCB=60°,
∵M(jìn)是AD中點(diǎn),
∴AM=MD
∵AD∥BC,
∴∠AMB=∠MBC=60°,∠DMC=∠MCB=60°.
∴△AMB≌△DMC,
∴AB=DC,
∴梯形ABCD是等腰梯形.
(2)解:在等邊三角形MBC中,MB=MC=BC=4,∠MBC=∠MCB=60°,∠MPQ=60°,
∴∠BMP+∠BPM=∠BPM+∠QPC=120°,
∴∠BMP=∠QPC,
∴△BMP∽△CPQ,
∴PC:BM=CQ:BP
∵PC=x,MQ=y,則BP=4-x,QC=4-y,
∴
=
,
∴y=
x
2-x+4=
(x-2)
2+3,
即MQ的最小值為3;
(3)解:①△PQC為直角三角形,
由(2)知,當(dāng)MQ取最小值時(shí),x=PC=2.
∴P是BC的中點(diǎn),MP⊥BC,而∠MPQ=60°,
∴∠CPQ=30°,
∴∠PQC=90°,
②當(dāng)BP=1時(shí),有BP平行且等于AM,BP平行且等于MD,則四邊形ABPM四邊形MBPD均為平行四邊形.
當(dāng)BP=3時(shí),
∵PC平行且等于AM,PC平行且等于MD,
∴四邊形MPCD和四邊形APCM均為平行四邊形.
∴當(dāng)BP=1或BP=3時(shí),以點(diǎn)P、M和A、B、C、D中的兩個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,
此時(shí)平行四邊形有2個(gè).
分析:(1)需證△AMB≌△DMC,可得AB=DC,可得梯形ABCD是等腰梯形;
(2)可證△BPM∽△CQP,則PC:BM=CQ:BP,PC=x,MQ=y,BP=4-x,QC=4-y,即可得到BP與CQ的關(guān)系,從而轉(zhuǎn)化成y與x的函數(shù)關(guān)系式;
(3)先利用二次函數(shù)求最值,求出y取最小值時(shí)x的值和y的最小值,從而確定P、Q的位置,判斷出△PQC的形狀.應(yīng)考慮四邊形ABPM和四邊形MBPD均為平行四邊形,四邊形MPCD和四邊形APCM均為平行四邊形時(shí)的情況.
點(diǎn)評:本題考查了本題考查平行四邊形、直角三角形和等腰梯形的判定以及相似三角形的判定和性質(zhì)的應(yīng)用.還考查了二次函數(shù)的解析式的求法和與幾何圖形結(jié)合的綜合能力的培養(yǎng),求函數(shù)最小值等知識點(diǎn).要會利用數(shù)形結(jié)合的思想把代數(shù)和幾何圖形結(jié)合起來.