下列各項(xiàng)中,計(jì)算結(jié)果正確的是


  1. A.
    5a+5b=10ab
  2. B.
    a-(b+c-d)=a-b-c+d
  3. C.
    11m3-2m3=9
  4. D.
    a+2(b-c)=a+2b-c
B
分析:根據(jù)合并同類項(xiàng)法則以及去括號(hào)法則分別計(jì)算即可得出答案.
解答:A、5a+5b無法計(jì)算,故此選項(xiàng)錯(cuò)誤;
B、a-(b+c-d)=a-b-c+d,故此選項(xiàng)正確;
C、11m3-2m3=9m3,故此選項(xiàng)錯(cuò)誤;
D、a+2(b-c)=a+2b-2c,故此選項(xiàng)錯(cuò)誤;
故選:B.
點(diǎn)評(píng):此題主要考查了合并同類項(xiàng)法則以及去括號(hào)法則,正確計(jì)算注意去括號(hào)法則是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

認(rèn)真閱讀材料,然后回答問題:
我們初中學(xué)習(xí)了多項(xiàng)式的運(yùn)算法則,相應(yīng)的,我們可以計(jì)算出多項(xiàng)式的展開式,如:(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3,…
下面我們依次對(duì)(a+b)n展開式的各項(xiàng)系數(shù)進(jìn)一步研究發(fā)現(xiàn),當(dāng)n取正整數(shù)是可以單獨(dú)列成表中的形式:

上面的多項(xiàng)式展開系數(shù)表稱為“楊輝三角形”;仔細(xì)觀察“楊輝三角形”,用你發(fā)現(xiàn)的規(guī)律回答下列問題:
(1)多項(xiàng)式(a+b)n的展開式是一個(gè)幾次幾項(xiàng)式?并預(yù)測第三項(xiàng)的系數(shù);
(2)請你預(yù)測一下多項(xiàng)式(a+b)n展開式的各項(xiàng)系數(shù)之和.
(3)結(jié)合上述材料,推斷出多項(xiàng)式(a+b)n(n取正整數(shù))的展開式的各項(xiàng)系數(shù)之和為S,(結(jié)果用含字母n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列各項(xiàng)中,計(jì)算結(jié)果正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年遼寧省沈陽市中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題

認(rèn)真閱讀材料,然后回答問題:
我們初中學(xué)習(xí)了多項(xiàng)式的運(yùn)算法則,相應(yīng)的,我們可以計(jì)算出多項(xiàng)式的展開式,如:(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3,…
下面我們依次對(duì)(a+b)n展開式的各項(xiàng)系數(shù)進(jìn)一步研究發(fā)現(xiàn),當(dāng)n取正整數(shù)是可以單獨(dú)列成表中的形式:

上面的多項(xiàng)式展開系數(shù)表稱為“楊輝三角形”;仔細(xì)觀察“楊輝三角形”,用你發(fā)現(xiàn)的規(guī)律回答下列問題:
(1)多項(xiàng)式(a+b)n的展開式是一個(gè)幾次幾項(xiàng)式?并預(yù)測第三項(xiàng)的系數(shù);
(2)請你預(yù)測一下多項(xiàng)式(a+b)n展開式的各項(xiàng)系數(shù)之和.
(3)結(jié)合上述材料,推斷出多項(xiàng)式(a+b)n(n取正整數(shù))的展開式的各項(xiàng)系數(shù)之和為S,(結(jié)果用含字母n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列各項(xiàng)中,計(jì)算結(jié)果正確的是                                      (      )

A.                     B.

C.                    D.

查看答案和解析>>

同步練習(xí)冊答案