(2006•濱州)已知:M(2,1),N(2,6)兩點,反比例函數(shù)與線段MN相交,過反比例函數(shù)上任意一點P作y軸的垂線PG,G為垂足,O為坐標(biāo)原點,則△OGP面積S的取值范圍是( )
A.≤S≤3
B.1≤S≤6
C.2≤S≤12
D.S≤2或S≥12
【答案】分析:根據(jù)反比例函數(shù)中k的幾何意義,即圖象上的點與原點所連的線段、坐標(biāo)軸、向坐標(biāo)軸作垂線所圍成的直角三角形面積S的關(guān)系即S=|k|.
解答:解:根據(jù)題意可得:M(2,1),N(2,6)兩點,
反比例函數(shù)與線段MN相交,
則k的范圍是2≤k≤12;
則△OGP面積S為k;
故△OGP面積S的取值范圍是1≤S≤6.
故選B.
點評:主要考查了反比例函數(shù)中k的幾何意義,即圖象上的點與原點所連的線段、坐標(biāo)軸、向坐標(biāo)軸作垂線所圍成的直角三角形面積S的關(guān)系即S=|k|,是經(jīng)?疾榈囊粋知識點;這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•濱州)已知:拋物線M:y=x2+(m-1)x+(m-2)與x軸相交于A(x1,0),B(x2,0)兩點,且x1<x2
(Ⅰ)若x1x2<0,且m為正整數(shù),求拋物線M的解析式;
(Ⅱ)若x1<1,x2>1,求m的取值范圍;
(Ⅲ)試判斷是否存在m,使經(jīng)過點A和點B的圓與y軸相切于點C(0,2)?若存在,求出M:y=x2+(m-1)x+(m-2)的值;若不存在,試說明理由;
(Ⅳ)若直線l:y=kx+b過點F(0,7),與(Ⅰ)中的拋物線M相交于P,Q兩點,且使,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(03)(解析版) 題型:填空題

(2006•濱州)已知二次函數(shù)不經(jīng)過第一象限,且與x軸相交于不同的兩點,請寫出一個滿足上述條件的二次函數(shù)解析式    .(答案不唯一)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)“選擇、填空題”專練(一)(解析版) 題型:填空題

(2006•濱州)已知二次函數(shù)不經(jīng)過第一象限,且與x軸相交于不同的兩點,請寫出一個滿足上述條件的二次函數(shù)解析式    .(答案不唯一)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年四川省南充高中高一新生入學(xué)考試數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•濱州)已知:拋物線M:y=x2+(m-1)x+(m-2)與x軸相交于A(x1,0),B(x2,0)兩點,且x1<x2
(Ⅰ)若x1x2<0,且m為正整數(shù),求拋物線M的解析式;
(Ⅱ)若x1<1,x2>1,求m的取值范圍;
(Ⅲ)試判斷是否存在m,使經(jīng)過點A和點B的圓與y軸相切于點C(0,2)?若存在,求出M:y=x2+(m-1)x+(m-2)的值;若不存在,試說明理由;
(Ⅳ)若直線l:y=kx+b過點F(0,7),與(Ⅰ)中的拋物線M相交于P,Q兩點,且使,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山東省濱州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2006•濱州)已知二次函數(shù)不經(jīng)過第一象限,且與x軸相交于不同的兩點,請寫出一個滿足上述條件的二次函數(shù)解析式    .(答案不唯一)

查看答案和解析>>

同步練習(xí)冊答案