(2011•黔南州)下列命題中,真命題是( )
A.對角線互相垂直且相等的四邊形是正方形
B.等腰梯形既是軸對稱圖形又是中心對稱圖形
C.圓的切線垂直于經(jīng)過切點的半徑
D.垂直于同一直線的兩條直線互相垂直
【答案】分析:分析是否為真命題,需要分別分析各題設(shè)是否能推出結(jié)論,從而利用排除法得出答案.
解答:解:A、錯誤,例如對角線互相垂直的等腰梯形;
B、錯誤,等腰梯形是軸對稱圖形不是中心對稱圖形;
C、正確,符合切線的性質(zhì);
D、錯誤,垂直于同一直線的兩條直線平行.
故選C.
點評:主要考查命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的性質(zhì)定理.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2011•黔南州)如圖,在平面直角坐標系中,點A的坐標為(1,),△AOB的面積是
(1)求點B的坐標;
(2)求過點A、O、B的拋物線的解析式;
(3)在(2)中拋物線的對稱軸上是否存在點C,使△AOC的周長最?若存在,求出點C的坐標;若不存在,請說明理由;
(4)在(2)中x軸下方的拋物線上是否存在一點P,過點P作x軸的垂線,交直線AB于點D,線段OD把△AOB分成兩個三角形,使其中一個三角形面積與四邊形BPOD面積比為2:3?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《三角形》(11)(解析版) 題型:解答題

(2011•黔南州)如圖,在平面直角坐標系中,點A的坐標為(1,),△AOB的面積是
(1)求點B的坐標;
(2)求過點A、O、B的拋物線的解析式;
(3)在(2)中拋物線的對稱軸上是否存在點C,使△AOC的周長最。咳舸嬖,求出點C的坐標;若不存在,請說明理由;
(4)在(2)中x軸下方的拋物線上是否存在一點P,過點P作x軸的垂線,交直線AB于點D,線段OD把△AOB分成兩個三角形,使其中一個三角形面積與四邊形BPOD面積比為2:3?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2011•黔南州)如圖,在平面直角坐標系中,點A的坐標為(1,),△AOB的面積是
(1)求點B的坐標;
(2)求過點A、O、B的拋物線的解析式;
(3)在(2)中拋物線的對稱軸上是否存在點C,使△AOC的周長最?若存在,求出點C的坐標;若不存在,請說明理由;
(4)在(2)中x軸下方的拋物線上是否存在一點P,過點P作x軸的垂線,交直線AB于點D,線段OD把△AOB分成兩個三角形,使其中一個三角形面積與四邊形BPOD面積比為2:3?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年云南省玉溪市中考數(shù)學試卷(解析版) 題型:解答題

(2011•黔南州)如圖,在平面直角坐標系中,點A的坐標為(1,),△AOB的面積是
(1)求點B的坐標;
(2)求過點A、O、B的拋物線的解析式;
(3)在(2)中拋物線的對稱軸上是否存在點C,使△AOC的周長最。咳舸嬖,求出點C的坐標;若不存在,請說明理由;
(4)在(2)中x軸下方的拋物線上是否存在一點P,過點P作x軸的垂線,交直線AB于點D,線段OD把△AOB分成兩個三角形,使其中一個三角形面積與四邊形BPOD面積比為2:3?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年安徽省黃山市祁門二中中考數(shù)學一模試卷(解析版) 題型:選擇題

(2011•黔南州)三角形兩邊長分別為3和6,第三邊是方程x2-6x+8=0的解,則這個三角形的周長是( )
A.11
B.13
C.11或13
D.不能確定

查看答案和解析>>

同步練習冊答案