如圖,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按圖中所示方法將△BCD沿BD折疊,使點C落在AB邊的C′點,那么△ADC′的面積是______.
∵∠C=90°,BC=6cm,AC=8cm,
∴AB=10cm,
∵將△BCD沿BD折疊,使點C落在AB邊的C′點,
∴△BCD≌△BC′D,
∴∠C=∠BC′D=90°,DC=DC′,BC=BC′=6cm,
∴AC′=AB-BC′=4cm,
設(shè)DC=xcm,則AD=(8-x)cm,
在Rt△ADC′中,AD2=AC′2+C′D2
即(8-x)2=x2+42,解得x=3,
∵∠AC′D=90°,
∴△ADC′的面積═
1
2
×AC′×C′D=
1
2
×4×3=6(cm2).
故答案為6cm2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:三點A(a,1)、B(3,1)、C(6,0),點A在正比例函數(shù)y=
1
2
x的圖象上.
(1)求a的值;
(2)點P為x軸上一動點.
①當(dāng)△OAP與△CBP周長的和取得最小值時,求點P的坐標(biāo);
②當(dāng)∠APB=20°時,求∠OAP+∠PBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,矩形ABCD中,AB=4,AD=5,E是CD上的一點,將△ADE沿AE折疊,點D剛好與BC邊上點F重合,則線段CE的長為(  )
A.
3
2
B.
5
2
C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正方形ABCD的邊長為4,點E是AB邊上的一點,將△BCE沿著CE折疊至△FCE,若CF、CE恰好與正方形ABCD的中心為圓心的⊙O相切,則折痕CE的長為( 。
A.5
3
B.5C.
8
3
3
D.以上都不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,矩形ABCD中,AB=3,BC=4,如果將該矩形沿對角線BD折疊,那么圖中陰影部分的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,四邊形ABCD是矩形,AD=3,AB=4,把矩形沿直線AC折疊,點B落在點E處,連接DE,則DE的長為( 。
A.1B.
9
5
C.
7
25
D.
7
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將正方形紙片兩次對折,并剪出一個菱形小洞后平鋪,得到的圖形是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知:Rt△ABC中,∠ACB=90°.
(1)尺規(guī)作圖:作∠BAC的平分線AM交BC于點D(只保留作圖痕跡,不寫作法);
(2)在(1)所作圖形中,將Rt△ABC沿某條直線折疊,使點A與點D重合,折痕EF交AC于點E,交AB于點F,連接DE、DF,再展回到原圖形,得到四邊形AEDF.①試判斷四邊形AEDF的形狀,并證明;②若AC=8,CD=4,求四邊形AEDF的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在三角形紙片ABC中,已知∠ABC=90°,AB=6,BC=8.過點A作直線l平行于BC,折疊三角形紙片ABC,使直角頂點B落在直線l上的T處,折痕為MN.當(dāng)點T在直線l上移動時,折痕的端點M、N也隨之移動.若限定端點M、N分別在AB、BC邊上移動,則線段AT長度的最大值與最小值之和為______(計算結(jié)果不取近似值).

查看答案和解析>>

同步練習(xí)冊答案