精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,AC=BC=6,D是AC上的一點,tan∠DBA=
15
,求AD的長.
分析:作DE⊥AB于E,先根據(jù)腰直角三角形的性質(zhì)得到AB=
2
AC=6
2
,∠A=45°,設(shè)AE=x,則DE=x,AD=
2
x,在Rt△BED中,利用∠DBE的正切得到BE=5x,然后由AE+BE=AB可計算出x=
2
,再利用AD=
2
x進(jìn)行計算.
解答:精英家教網(wǎng)解:作DE⊥AB于E,如圖,
∵∠C=90°,AC=BC=6,
∴△ACB為等腰直角三角形,AB=
2
AC=6
2

∴∠A=45°,
在Rt△ADE中,設(shè)AE=x,則DE=x,AD=
2
x,
在Rt△BED中,tan∠DBE=
DE
BE
,
∴BE=
x
1
5
=5x,
∴x+5x=6
2
,解得x=
2
,
∴AD=
2
×
2
=2.
點評:本題考查了解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.也考查了等腰直角三角形的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當(dāng)點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設(shè)點P的運動時間為t(s).
(1)當(dāng)點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點N落在AB邊上時,求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案