【題目】小圓同學(xué)對(duì)圖形旋轉(zhuǎn)前后的線段之間、角之間的關(guān)系進(jìn)行了拓展探究.

(一)猜測(cè)探究

中,,是平面內(nèi)任意一點(diǎn),將線段繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)與相等的角度,得到線段,連接

1)如圖1,若是線段上的任意一點(diǎn),請(qǐng)直接寫(xiě)出的數(shù)量關(guān)系是   ,的數(shù)量關(guān)系是   ;

2)如圖2,點(diǎn)延長(zhǎng)線上點(diǎn),若內(nèi)部射線上任意一點(diǎn),連接,(1)中結(jié)論是否仍然成立?若成立,請(qǐng)給予證明,若不成立,請(qǐng)說(shuō)明理由.

(二)拓展應(yīng)用

如圖3,在中,,,,上的任意點(diǎn),連接,將繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn),得到線段,連接.求線段長(zhǎng)度的最小值.

【答案】(一)(1)結(jié)論:,.理由見(jiàn)解析;(2)如圖2中,①中結(jié)論仍然成立.理由見(jiàn)解析;(二)的最小值為

【解析】

(一)①結(jié)論:.根據(jù)證明即可.

②①中結(jié)論仍然成立.證明方法類(lèi)似.

(二)如圖3中,在上截取,連接,作,作.理由全等三角形的性質(zhì)證明,推出當(dāng)的值最小時(shí),的值最小,求出的值即可解決問(wèn)題.

(一)(1)結(jié)論:,

理由:如圖1中,

,

,

,

,,

),

故答案為,

2)如圖2中,中結(jié)論仍然成立.

理由:,

,

,

,,

),

(二)如圖3中,在上截取,連接,作,作

,

,,

),

,

當(dāng)的值最小時(shí),的值最小,

中,,,

,

,

,

根據(jù)垂線段最短可知,當(dāng)點(diǎn)重合時(shí),的值最小,

的最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將二次函數(shù)yx25x6x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個(gè)新圖象,若直線y2x+b與這個(gè)新圖象有3個(gè)公共點(diǎn),則b的值為(  )

A. 或﹣12B. 2C. 122D. 或﹣12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把一副三角板按如圖甲放置,其中∠ACB=∠DEC90°,∠A45°,∠D30°,斜邊AB6cm,DC7cm.把三角板DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)15°得到D1CE1(如圖乙).這時(shí)ABCD1相交于點(diǎn)O、與D1E1相交于點(diǎn)F

1)求∠OFE1的度數(shù);

2)求線段AD1的長(zhǎng);

3)若把DCE繞著點(diǎn)C順時(shí)針再旋轉(zhuǎn)30°D2CE2,這時(shí)點(diǎn)BD2CE2的內(nèi)部、外部、還是邊上?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠A=30°,∠C=90°,E是斜邊AB的中點(diǎn),點(diǎn)PAC邊上一動(dòng)點(diǎn),若RtABC的直角邊AC=4,則PB+PE的最小值等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx2ax軸交于點(diǎn)A和點(diǎn)B1,0),與y軸將于點(diǎn)C0,﹣).

1)求拋物線的解析式;

2)若點(diǎn)D2,n)是拋物線上的一點(diǎn),在y軸左側(cè)的拋物線上存在點(diǎn)T,使△TAD的面積等于△TBD的面積,求出所有滿(mǎn)足條件的點(diǎn)T的坐標(biāo);

3)直線ykxk+2,與拋物線交于兩點(diǎn)P、Q,其中在點(diǎn)P在第一象限,點(diǎn)Q在第二象限,PAy軸于點(diǎn)MQAy軸于點(diǎn)N,連接BMBN,試判斷△BMN的形狀并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形OABC的頂點(diǎn)A(8,0),C(06),點(diǎn)DBC邊上的中點(diǎn),拋物線yax2bx經(jīng)過(guò)A,D兩點(diǎn),如圖所示.

(1)求點(diǎn)D關(guān)于y軸的對(duì)稱(chēng)點(diǎn)D′的坐標(biāo)及a,b的值;

(2)將拋物線yax2bx向下平移,記平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)為A1,點(diǎn)D的對(duì)應(yīng)點(diǎn)為D1,當(dāng)拋物線平移到某個(gè)位置時(shí),恰好使得點(diǎn)Oy軸上到A1,D1兩點(diǎn)距離之和OA1OD1最短的一點(diǎn),求平移后的拋物線解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BC是路邊坡角為30°,長(zhǎng)為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DADB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°60°(圖中的點(diǎn)A、B、C、D、M、N均在同一平面內(nèi),CMAN).

(1)求燈桿CD的高度;

(2)求AB的長(zhǎng)度(結(jié)果精確到0.1米).(參考數(shù)據(jù):=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當(dāng)x≥2時(shí),yx的增大而增大,且-2≤x≤1時(shí),y的最大值為9,則a的值為  

A. 1 B. - C. D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系xOy中,矩形OABC的邊長(zhǎng)OA、OC分別為12cm、6cm,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B,且18a+c=0.

(1)求拋物線的解析式.

(2)如果點(diǎn)P由點(diǎn)A開(kāi)始沿AB邊以1cm/s的速度向終點(diǎn)B移動(dòng),同時(shí)點(diǎn)Q由點(diǎn)B開(kāi)始沿BC邊以2cm/s的速度向終點(diǎn)C移動(dòng).

移動(dòng)開(kāi)始后第t秒時(shí),設(shè)PBQ的面積為S,試寫(xiě)出S與t之間的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍.

當(dāng)S取得最大值時(shí),在拋物線上是否存在點(diǎn)R,使得以P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出R點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案