【題目】小圓同學(xué)對(duì)圖形旋轉(zhuǎn)前后的線段之間、角之間的關(guān)系進(jìn)行了拓展探究.
(一)猜測(cè)探究
在中,,是平面內(nèi)任意一點(diǎn),將線段繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)與相等的角度,得到線段,連接.
(1)如圖1,若是線段上的任意一點(diǎn),請(qǐng)直接寫(xiě)出與的數(shù)量關(guān)系是 ,與的數(shù)量關(guān)系是 ;
(2)如圖2,點(diǎn)是延長(zhǎng)線上點(diǎn),若是內(nèi)部射線上任意一點(diǎn),連接,(1)中結(jié)論是否仍然成立?若成立,請(qǐng)給予證明,若不成立,請(qǐng)說(shuō)明理由.
(二)拓展應(yīng)用
如圖3,在中,,,,是上的任意點(diǎn),連接,將繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn),得到線段,連接.求線段長(zhǎng)度的最小值.
【答案】(一)(1)結(jié)論:,.理由見(jiàn)解析;(2)如圖2中,①中結(jié)論仍然成立.理由見(jiàn)解析;(二)的最小值為.
【解析】
(一)①結(jié)論:,.根據(jù)證明≌即可.
②①中結(jié)論仍然成立.證明方法類(lèi)似.
(二)如圖3中,在上截取,連接,作于,作于.理由全等三角形的性質(zhì)證明,推出當(dāng)的值最小時(shí),的值最小,求出的值即可解決問(wèn)題.
(一)(1)結(jié)論:,.
理由:如圖1中,
∵,
∴,
∴,
∵,,
∴≌(),
∴.
故答案為,.
(2)如圖2中,①中結(jié)論仍然成立.
理由:∵,
∴,
∴,
∵,,
∴≌(),
∴.
(二)如圖3中,在上截取,連接,作于,作于.
∵,
∴,
∵,,
∴≌(),
∴,
∴當(dāng)的值最小時(shí),的值最小,
在中,∵,,
∴,
∵,
∴,
∴,
在,∵,
∴,
根據(jù)垂線段最短可知,當(dāng)點(diǎn)與重合時(shí),的值最小,
∴的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將二次函數(shù)y=x2﹣5x﹣6在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個(gè)新圖象,若直線y=2x+b與這個(gè)新圖象有3個(gè)公共點(diǎn),則b的值為( )
A. ﹣或﹣12B. ﹣或2C. ﹣12或2D. ﹣或﹣12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把一副三角板按如圖甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=6cm,DC=7cm.把三角板DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)15°得到△D1CE1(如圖乙).這時(shí)AB與CD1相交于點(diǎn)O、與D1E1相交于點(diǎn)F.
(1)求∠OFE1的度數(shù);
(2)求線段AD1的長(zhǎng);
(3)若把△DCE繞著點(diǎn)C順時(shí)針再旋轉(zhuǎn)30°得△D2CE2,這時(shí)點(diǎn)B在△D2CE2的內(nèi)部、外部、還是邊上?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠A=30°,∠C=90°,E是斜邊AB的中點(diǎn),點(diǎn)P為AC邊上一動(dòng)點(diǎn),若Rt△ABC的直角邊AC=4,則PB+PE的最小值等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣2a與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸將于點(diǎn)C(0,﹣).
(1)求拋物線的解析式;
(2)若點(diǎn)D(2,n)是拋物線上的一點(diǎn),在y軸左側(cè)的拋物線上存在點(diǎn)T,使△TAD的面積等于△TBD的面積,求出所有滿(mǎn)足條件的點(diǎn)T的坐標(biāo);
(3)直線y=kx﹣k+2,與拋物線交于兩點(diǎn)P、Q,其中在點(diǎn)P在第一象限,點(diǎn)Q在第二象限,PA交y軸于點(diǎn)M,QA交y軸于點(diǎn)N,連接BM、BN,試判斷△BMN的形狀并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形OABC的頂點(diǎn)A(-8,0),C(0,6),點(diǎn)D是BC邊上的中點(diǎn),拋物線y=ax2+bx經(jīng)過(guò)A,D兩點(diǎn),如圖所示.
(1)求點(diǎn)D關(guān)于y軸的對(duì)稱(chēng)點(diǎn)D′的坐標(biāo)及a,b的值;
(2)將拋物線y=ax2+bx向下平移,記平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)為A1,點(diǎn)D的對(duì)應(yīng)點(diǎn)為D1,當(dāng)拋物線平移到某個(gè)位置時(shí),恰好使得點(diǎn)O是y軸上到A1,D1兩點(diǎn)距離之和OA1+OD1最短的一點(diǎn),求平移后的拋物線解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BC是路邊坡角為30°,長(zhǎng)為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DA和DB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°和60°(圖中的點(diǎn)A、B、C、D、M、N均在同一平面內(nèi),CM∥AN).
(1)求燈桿CD的高度;
(2)求AB的長(zhǎng)度(結(jié)果精確到0.1米).(參考數(shù)據(jù):=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當(dāng)x≥2時(shí),y隨x的增大而增大,且-2≤x≤1時(shí),y的最大值為9,則a的值為
A. 1或 B. -或 C. D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系xOy中,矩形OABC的邊長(zhǎng)OA、OC分別為12cm、6cm,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B,且18a+c=0.
(1)求拋物線的解析式.
(2)如果點(diǎn)P由點(diǎn)A開(kāi)始沿AB邊以1cm/s的速度向終點(diǎn)B移動(dòng),同時(shí)點(diǎn)Q由點(diǎn)B開(kāi)始沿BC邊以2cm/s的速度向終點(diǎn)C移動(dòng).
①移動(dòng)開(kāi)始后第t秒時(shí),設(shè)△PBQ的面積為S,試寫(xiě)出S與t之間的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍.
②當(dāng)S取得最大值時(shí),在拋物線上是否存在點(diǎn)R,使得以P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出R點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com