【題目】甲、乙兩人同時(shí)從相距25千米的A地去B地,甲騎摩托車,乙騎自行車,甲的速度是乙的速度的3倍,甲到達(dá)B地后停留了30分鐘,然后從B地返回A地,在途中遇見了乙,此時(shí)距他們出發(fā)的時(shí)間剛好是1小時(shí),則甲的速度是( 。

A. 20千米/小時(shí) B. 60千米/小時(shí)

C. 25千米/小時(shí) D. 75千米小時(shí)

【答案】B

【解析】

設(shè)乙的速度為x(千米/小時(shí)), 則甲的速度為3x(千米/小時(shí)),根據(jù)甲乙在返程相遇可知1小時(shí)中,甲乙一共的路程為50千米, 根據(jù)題中的等式列出方程, 求解即可.

設(shè)乙的速度為x(千米/小時(shí)), 則甲的速度為3x(千米/小時(shí)), 1小時(shí)里, 乙走的路程是x千米,甲走的路程是(1-)3x千米,因?yàn)榧住?/span> 乙在甲返回的途中相遇且甲停留了30分鐘即小時(shí), 則可列出方程

x+(1-)3x =252, 解得x=20, 則甲的速度為60千米/小時(shí), 乙的速度為20千米/小時(shí)。

: 甲的速度為60(千米/小時(shí)), (乙的速度為20千米/小時(shí)).

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ab是新規(guī)定的一種運(yùn)算法則:ab=a2+ab,例如3(﹣2)=32+3×(﹣2)=3.

(1)求(﹣3)5的值;

(2)若(﹣2)x=6,求x的值;

(3)若3(2x)=﹣4+x,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),A、B、C三點(diǎn)的坐標(biāo)為( ,0)、(3 ,0)、(0,5),點(diǎn)D在第一象限,且∠ADB=60°,則線段CD的長(zhǎng)的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

1)寫出數(shù)軸上AB兩點(diǎn)表示的數(shù);

2)動(dòng)點(diǎn)P、Q分別從A、C同時(shí)出發(fā),點(diǎn)P以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),點(diǎn)Q以每秒1個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為tt0)秒,t為何值時(shí),原點(diǎn)O、與P、Q三點(diǎn)中,有一點(diǎn)恰好是另兩點(diǎn)所連線段的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,使∠AOC=60°,將一把直角三角尺的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖1中的三角尺繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖2,使點(diǎn)NOC的反向延長(zhǎng)線上,請(qǐng)直接寫出圖中∠MOB的度數(shù);

(2)將圖1中的三角尺繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖3,使一邊OM∠BOC的內(nèi)部,且恰好平分∠BOC,求∠CON的度數(shù);

(3)將圖1中的三角尺繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖4,使ON∠AOC的內(nèi)部,請(qǐng)?zhí)骄?/span>∠AOM∠NOC之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A的坐標(biāo)為(a,0)(其中a>0),作ABy軸交反比例函數(shù)(k>0,x>0)的圖象于點(diǎn)B.

(1)當(dāng)OAB的面積為2時(shí),k的值;a=2,過A點(diǎn)作ACOB(k>0,x>0)圖象于點(diǎn)C,求C的橫坐標(biāo);

(2)若D為射線AB上一點(diǎn),連接OD交反比例函數(shù)圖象于點(diǎn)E,DFx軸交反比例函數(shù)(k>0,x>0)的圖象于點(diǎn)F,連接EF、EB,試猜想:的值是否隨a的變化而變化?如果不變,求出的值;如果變化,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O的半徑為4,OA為半徑,CD為弦,OACD交于點(diǎn)M,將弧CD沿著CD翻折后,點(diǎn)A與圓心O重合,延長(zhǎng)OAP,使AP=OA,連接PC.

(1)求CD的長(zhǎng);

(2)求證:PCO的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,過點(diǎn)O作EF∥BC交AB于點(diǎn)E,交AC于點(diǎn)F,過點(diǎn)O作OD⊥AC于點(diǎn)D,下列四個(gè)結(jié)論:

①EF=BE+CF;

②∠BOC=90°+∠A;

③點(diǎn)O到△ABC各邊的距離相等;

④設(shè)OD=m,AE+AF=n,則S△AEF=mn.

其中正確的結(jié)論是( )

A. ①②③ B. ①②④ C. ②③④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由邊長(zhǎng)為1的小正三角形組成的網(wǎng)格圖,點(diǎn)O和△ABC的頂點(diǎn)都在正三角形的格點(diǎn)上,將△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)120°得到△A′B′C′.

(1)在網(wǎng)格中畫出旋轉(zhuǎn)后的△A′B′C′;
(2)求AB邊旋轉(zhuǎn)時(shí)掃過的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案