等腰梯形ABCD中,如圖1,AB∥CD,AD=BC,延長(zhǎng)AB到E,使BE=CD,連接CE.
(1)求證:CE=CA;
(2)上述條件下,如圖2,若AF⊥CE于點(diǎn)F,且AF平分∠DAE,數(shù)學(xué)公式,求sin∠CAF的值.

(1)證明:∵四邊形ABCD是等腰梯形
∴AC=BD,CD∥BE,
∵CD=BE,
∴四邊形DBEC是平行四邊形
∴CE=BD,
∴CE=CA;

(2)解:∵CD=BE,且,
=
∵AF⊥EC,BD∥EC
∴AF⊥BD,設(shè)垂足為O
∵AF平分∠DAB
∴AF垂直平分BD,即BO=BD=AC=CE
∵BO∥CE
==,即=
∴EF=CE
∴CF=CE=AC
∴sin∠CAF==
分析:(1)根據(jù)等腰梯形的性質(zhì)可得出AC=BD,而CDBE,因此四邊形CEBD是平行四邊形,CE=BD,因此可得出CE=CA;
(2)要求∠CAF的正弦值,就要知道,CF和AC的比例關(guān)系.由于BD∥CE,AF⊥CE,那么AF⊥BD,而AF平分∠DAB,因此AF垂直平分BD,如果設(shè)AF,BD交于O點(diǎn),那么BO=BD=AC=CE.根據(jù)CD:AE=2:5,即BE:AE=2:5,可得出AB:AE=3:5,有BO∥CE,得出BO:EF=AB:AE,也就求出了BF何CE的比例關(guān)系,便可得出CF和EC的比例關(guān)系,由于CE=AC,因此也就得出了CF和AC的比例關(guān)系即可得出∠CAF的正弦值.
點(diǎn)評(píng):本題主要考查了等腰梯形的性質(zhì),相似三角形的性質(zhì)等知識(shí)點(diǎn)的應(yīng)用,本題中通過(guò)AF垂直平分BD得出BO=BD,進(jìn)而求出EF和CE的關(guān)系是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰梯形ABCD中,AD∥BC,AD=4,BC=2,tanA=2,則梯形ABCD的面積是
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在等腰梯形ABCD中,AB∥CD,∠ABC=60°,AC平分∠DAB,E、F分別為對(duì)角線AC、DB的中點(diǎn),且EF=4.求這個(gè)梯形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(1)如圖,在等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AD=5,求EC的長(zhǎng).
(2)如圖是一個(gè)外輪廓為矩形的機(jī)器零件平面示意圖,根據(jù)圖中的尺寸(單位:mm),計(jì)算兩圓孔中心A和B的距離.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在等腰梯形ABCD中,AD∥BC,BD平分∠ABC,∠C=60°,
(1)求AD:BC;
(2)若AD=2cm,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

等腰梯形ABCD中,AD=2,BC=4,高DF=2,則腰CD長(zhǎng)是
5
5

查看答案和解析>>

同步練習(xí)冊(cè)答案