如圖,△ABC是邊長為1的等邊三角形.取BC邊中點E,作ED∥AB,EF∥AC,得到四邊形EDAF,它的面積記作S1;取BE中點E1,作E1D1∥FB,E1F1∥EF,得到四邊形E1D1FF1,它的面積記作S2.照此規(guī)律作下去,則S2011=   
【答案】分析:先根據(jù)△ABC是等邊三角形可求出△ABC的高,再根據(jù)三角形中位線定理可求出S1的值,進而可得出S2的值,找出規(guī)律即可得出S2011的值.
解答:解:∵△ABC是邊長為1的等邊三角形,
∴△ABC的高=AB•sin∠A=1×=,
∵DE、EF是△ABC的中位線,
∴AF=
∴S1=××=;
同理可得,S2=×

∴Sn=n-1;
∴S2011=(表示為亦可).
故答案為:S2011=(表示為亦可).
點評:本題考查的是相似多邊形的性質(zhì),涉及到等邊三角形的性質(zhì)、銳角三角函數(shù)的定義、特殊角的三角函數(shù)值及三角形中位線定理,熟知以上知識是解答此題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC是邊長為a的等邊三角形,O為△ABC的中心.將△ABC繞著中心O旋轉(zhuǎn)120°.
①直接寫出△ABC的內(nèi)切圓半徑r和外接圓半徑R分別是多少?
②設點D、E、F分別在邊AB、BC、CA上,且AD=2DB,BE=2EC,CF=2FA,試畫出△DEF,說明它的形狀,并計算它的周長;
③根據(jù)“線動成面”的道理,△ABC的三條邊AB、BC和CA在旋轉(zhuǎn)過程中掃過的部分組成的平面圖形的形狀是什么?并計算出此圖形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•遵義)如圖,△ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.
(1)當∠BQD=30°時,求AP的長;
(2)當運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•溧水縣一模)如圖,△ABC是邊長為4的等邊三角形,將△ABC沿直線BC向右平移,使B點與C點重合,得到△DCE,連結(jié)BD,交AC于F.
(1)猜想BD與DE的位置關(guān)系,并證明你的結(jié)論;
(2)求△BDE的面積S.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•湘潭)如圖,△ABC是邊長為3的等邊三角形,將△ABC沿直線BC向右平移,使B點與C點重合,得到△DCE,連接BD,交AC于F.
(1)猜想AC與BD的位置關(guān)系,并證明你的結(jié)論;
(2)求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是邊長為3的等邊三角形,△BDC是等腰三角形,且∠BDC=120°,以D為頂點做一個60°角,使其兩邊分別交AB于點M,交AC于點N,連接MN,則△AMN的周長為
6
6

查看答案和解析>>

同步練習冊答案