如圖,在梯形ABCD中,AD∥BC,E、F分別是AB、CD的中點(diǎn),則下列結(jié)論:①EF∥AD; ②S△ABO=S△DCO;③△OGH是等腰三角形;④BG=DG;⑤EG=HF。其中正確的個(gè)數(shù)是【 】
A、1個(gè) B、2個(gè) C、3個(gè) D、4個(gè)
D
【解析】梯形中位線定理,等腰三角形的判定,三角形中位線定理。
【分析】∵在梯形ABCD中,AD∥BC,E、F分別是AB、CD的中點(diǎn),
∴EF∥AD∥BC,∴①正確。
∵在梯形ABCD中,△ABC和△DBC是同底等高的三角形,
∴S△ABC=S△DBC。∴S△AB C-S△OBC =S△DBC-S△OBC,即S△ABO=S△DCO!啖谡_。
∵EF∥BC,∴∠OGH=∠OBC,∠OHG=∠OCB。
已知四邊形ABCD是梯形,不一定是等腰梯形,即∠OBC和∠OCB不一定相等,
即∠OGH和∠OHG不一定相等,∠GOH和∠OGH或∠OHG也不能證出相等。
∴△OGH是等腰三角形不對(duì),∴③錯(cuò)誤。
∵EF∥BC,AE=BE(E為AB中點(diǎn)),∴BG=DG,∴④正確。
∵EF∥BC,AE=BE(E為AB中點(diǎn)),∴AH=CH。
∵E、F分別為AB、CD的中點(diǎn),∴EH=BC,F(xiàn)G=BC。∴EH=FG。
∴EG=FH,∴⑤正確。
∴正確的個(gè)數(shù)是4個(gè)。故選D。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、3cm | B、7cm | C、3cm或7cm | D、2cm |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com