【題目】200861日起,我國(guó)實(shí)施“限塑令”,開始有償使用環(huán)保購(gòu)物袋.為了滿足市場(chǎng)需求,某廠家生產(chǎn)兩種款式的布質(zhì)環(huán)保購(gòu)物袋,每天共生產(chǎn)4500個(gè),兩種購(gòu)物袋的成本和售價(jià)如下表,設(shè)每天生產(chǎn)種購(gòu)物袋個(gè),每天共獲利元.

成本(元/個(gè))

售價(jià)(元/個(gè))

2

2.3

3

3.5

1)求出關(guān)于的函數(shù)解析式;

2)如果該廠每天最多投入成本10000元,那么每天最多獲利多少元?

【答案】1;(21550

【解析】

解:(1)y=0.3x+0.5(4500-x)=-0.2x+2250

22x+3(4500-x)≤10000

X≥3500

因?yàn)?/span>yx的一次函數(shù),k=-0.20yx的增大而減小,當(dāng)x=3500時(shí)y的值最小為1550元。

根據(jù)題意,利用(總獲利=A個(gè)數(shù)×A單位獲利+B個(gè)數(shù)×B單位獲利),得到函數(shù)解析式,再根據(jù)(2)的題意可得到一個(gè)不等式,解不等式求出x的范圍,再結(jié)合(1)中的函數(shù)式可得出x的具體數(shù)值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角三角形EPF的頂點(diǎn)PBC的中點(diǎn),兩邊PE、PF分別交ABAC于點(diǎn)E、F,給出以下五個(gè)結(jié)論:①AE=CF;②∠APE=CPF;③△EPF是等腰直角三角形;④EF=AP;⑤,當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與A、B重合)上述結(jié)論正確的是_____________.(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為2的正方形ABCD中剪去一個(gè)邊長(zhǎng)為1的小正方形CEFG,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運(yùn)動(dòng)到點(diǎn)B時(shí)停止(不含點(diǎn)A和點(diǎn)B),則ABP的面積S隨著時(shí)間t變化的函數(shù)圖象大致是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12分)如圖QPN的頂點(diǎn)P在正方形ABCD兩條對(duì)角線的交點(diǎn)處,QPN=α,將QPN繞點(diǎn)P旋轉(zhuǎn),旋轉(zhuǎn)過程中QPN的兩邊分別與正方形ABCD的邊AD和CD交于點(diǎn)E和點(diǎn)F(點(diǎn)F與點(diǎn)C,D不重合)

(1)如圖,當(dāng)α=90°時(shí),DE,DF,AD之間滿足的數(shù)量關(guān)系是 ;

(2)如圖,將圖中的正方形ABCD改為ADC=120°的菱形,其他條件不變,當(dāng)α=60°時(shí),(1)中的結(jié)論變?yōu)镈E+DF=AD,請(qǐng)給出證明;

(3)在(2)的條件下,若旋轉(zhuǎn)過程中QPN的邊PQ與射線AD交于點(diǎn)E,其他條件不變,探究在整個(gè)運(yùn)動(dòng)變化過程中,DE,DF,AD之間滿足的數(shù)量關(guān)系,直接寫出結(jié)論,不用加以證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某天快遞配送員張強(qiáng)一直在一條南北走向的街道上送快遞,如果規(guī)定向北為正,向南為負(fù),這天他從出發(fā)點(diǎn)開始所走的路程(單位:)記錄如下:

,,,,,

1)這天送完最后一個(gè)快遞時(shí),張強(qiáng)在出發(fā)點(diǎn)的什么方向?距離出發(fā)點(diǎn)有多遠(yuǎn)?

2)如果張強(qiáng)送完快遞時(shí),需立刻返回出發(fā)點(diǎn),那么他這天送快遞(含返回)共耗油多少升(每千米耗油)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在一條筆直的道路上相向而行,甲騎自行車從A地到B地,乙駕車從B地到A地,他們分別以不同的速度勻速行駛.已知甲先出發(fā)6分鐘后,乙才出發(fā),在整個(gè)過程中,甲、乙兩人的距離y(千米)與甲出發(fā)的時(shí)間x()之間的關(guān)系如圖所示,當(dāng)乙到達(dá)終點(diǎn)A時(shí),甲還需( )分鐘到達(dá)終點(diǎn)B.

A. 78B. 76C. 16D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將連續(xù)的奇數(shù)1,3,5,7……排成如下的數(shù)表,用十字形框框出5個(gè)數(shù).

探究規(guī)律一:設(shè)十字框中間的奇數(shù)為x,則框中五個(gè)奇數(shù)的和用含x的整式表示為   ,這說明被十字框框中的五個(gè)奇數(shù)的和一定是正整數(shù)nn1)的倍數(shù),這個(gè)正整數(shù)n   ;

探究規(guī)律二:落在十字框中間且位于第二列的一組奇數(shù)是2139,57,75,則這一組數(shù)可以用整式表示為18m+3m為序數(shù)),同樣,落在十字框中間且位于第三列的一組奇數(shù)可以表示為   ;(用含m的式子表示)

運(yùn)用規(guī)律:

1)已知被十字框框中的五個(gè)奇數(shù)的和為2025,則十字框中間的奇數(shù)是   ,這個(gè)奇數(shù)落在從左往右第   列;

2)被十字框框中的五個(gè)奇數(shù)的和可能是2020嗎?若能,請(qǐng)求出這五個(gè)數(shù):若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(8分)如圖,在△ABC中,ADBCD,AE平分∠DAC,BAC=80°,B=60°,求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】建立模型:

如圖1,已知ABC,AC=BC,C=90°,頂點(diǎn)C在直線l上.

操作:

過點(diǎn)A作ADl于點(diǎn)D,過點(diǎn)B作BEl于點(diǎn)E.求證:CAD≌△BCE

模型應(yīng)用:

(1)如圖2,在直角坐標(biāo)系中,直線l1:y=x+4與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,將直線l1繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到l2.求l2的函數(shù)表達(dá)式.

(2)如圖3,在直角坐標(biāo)系中,點(diǎn)B(8,6),作BAy軸于點(diǎn)A,作BCx軸于點(diǎn)C,P是線段BC上的一個(gè)動(dòng)點(diǎn),點(diǎn)Q(a,2a﹣6)位于第一象限內(nèi).問點(diǎn)A、P、Q能否構(gòu)成以點(diǎn)Q為直角頂點(diǎn)的等腰直角三角形,若能,請(qǐng)求出此時(shí)a的值,若不能,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案