如圖,在四邊形ABCD中,AD∥BC,對(duì)角線AC的中點(diǎn)為O,過點(diǎn)O作AC的垂線分別與AD、BC相交于點(diǎn)E、F,連接AF.求證:AE=AF.
分析: 方法一:連接CE,由與EF是線段AC的垂直平分線,故AE=CE,再由AE∥BC可知∠ACB=∠DAC,故可得出△AOE≌△COF,故AE=CF,所以四邊形AFCE是平行四邊形,再根據(jù)AE=CE可知四邊形AFCE是菱形,故可得出結(jié)論.
方法二:首先證明△AOE≌△COF,可得OE=OF,進(jìn)而得到AC垂直平分EF,再根據(jù)線段垂直平分線的性質(zhì)可得AE=AF.
解答: 證明:連接CE,
∵EF是線段AC的垂直平分線,
∴AE=CE,OA=OC,
∵AE∥BC,
∴∠ACB=∠DAC,
在△AOE與△COF中,
∵,
∴△AOE≌△COF,
∴AE=CF,
∴四邊形AFCE是平行四邊形,
∵AE=CE,
∴四邊形AFCE是菱形,
∴AE=AF.
另法:∵AD∥BC,
∴∠EAO=∠FCO,∠AEO=∠CFO,
∵,
∴△AOE≌△COF﹙ASA﹚,
∴OE=OF,
∴AC垂直平分EF,
∴AE=AF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com