【題目】如圖,在矩形ABCD中,E是AB邊的中點(diǎn),沿EC對折矩形ABCD,使B點(diǎn)落在點(diǎn)P處,折痕為EC,連接AP并延長AP交CD于F點(diǎn),連接BP.
(1)求證:四邊形AECF為平行四邊形;
(2)若BC= AB,判斷△ABP的形狀,并證明你的結(jié)論.
【答案】(1)見解析;(2)△APB是直角三角形.
【解析】
(1)由折疊的性質(zhì)得到BE=PE,EC與PB垂直,根據(jù)E為AB中點(diǎn),得到AE=EB=PE,利用三角形內(nèi)一邊上的中線等于這條邊的一半的三角形為直角三角形,得到∠APB為90°,進(jìn)而得到AF與EC平行,再由AE與FC平行,利用兩對邊平行的四邊形為平行四邊形即可得證;
(2)由(1)可得△APB是直角三角形.
解:(1)由折疊得到BE=PE,EC⊥PB,
∵E為AB的中點(diǎn),
∴AE=EB=PE,
∴AP⊥BP,且EC⊥PB,
∴AF∥EC,
∵四邊形ABCD是矩形,
∴AE∥FC,且AF∥EC,
∴四邊形AECF為平行四邊形;
(2)由(1)可知AP⊥BP
∴△APB是直角三角形
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,AC與⊙O相切于點(diǎn)A,連接BC交圓于點(diǎn)D,過點(diǎn)D作⊙O的切線交AC于E.
(1)求證:AE=CE
(2)如圖,在弧BD上任取一點(diǎn)F連接AF,弦GF與AB交于H,與BC交于M,求證:∠FAB+∠FBM=∠EDC.
(3)如圖,在(2)的條件下,當(dāng)GH=FH,HM=MF時,tan∠ABC=,DE=時,N為圓上一點(diǎn),連接FN交AB于L,滿足∠NFH+∠CAF=∠AHG,求LN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按要求作圖,不要求寫作法,但要保留作圖痕跡.
(1)如圖1,A為圓E上一點(diǎn),請用直尺(不帶刻度)和圓規(guī)作出圓內(nèi)接正方形;
(2)我們知道,三角形具有性質(zhì),三邊的垂直平分線相交于同一點(diǎn),三條角平分線相交于一點(diǎn),三條中線相交于一點(diǎn),事實(shí)上,三角形還具有性質(zhì):三條高交于同一點(diǎn),請運(yùn)用上述性質(zhì),只用直尺(不帶刻度)作圖:
①如圖2,在□ABCD中,E為CD的中點(diǎn),作BC的中點(diǎn)F;
②圖3,在由小正方形組成的網(wǎng)格中,的頂點(diǎn)都在小正方形的頂點(diǎn)上,作△ABC的高AH
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年省城各城區(qū)相繼召開了創(chuàng)建全國文明城市推進(jìn)大會.某校為了將“創(chuàng)城”工作做到更好,教務(wù)處、團(tuán)委和體育組聯(lián)合組織成立三個新社團(tuán),分別是籃球社團(tuán)、排球社團(tuán)、足球社團(tuán),經(jīng)統(tǒng)計,將七、八年級同學(xué)報名情況繪制了下面不完整的統(tǒng)計圖.請解答下列問題:
(1)七、八年級新社團(tuán)的報名總?cè)藬?shù)是 ;
(2)請你把條形統(tǒng)計圖補(bǔ)充完整;
(3)在扇形統(tǒng)計圖中,表示“排球”的扇形圓心角度數(shù)為 ;
(4)從報名八年級足球社團(tuán)的學(xué)生“張明”“李力”“王華”3人中選取其中兩人去參加學(xué)校的社團(tuán)年度表彰會,請用樹狀圖或列表法求出“張明”和“王華”一起被選中的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=ax+b和反比例函數(shù)y在同一直角坐標(biāo)系中的大致圖象是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,己知△ABC,任取一點(diǎn)O,連接AO,BO,CO,并取它們的中點(diǎn)D,E,F,得△DEF,則下列說法:①△ABC與△DEF是位似圖形;②△ABC與△DEF是相似圖形;③△ABC與△DEF的周長比為1∶2;④△ABC與△DEF的面積比為4∶1. 正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣2,與x軸的一個交點(diǎn)在(﹣3,0)和(﹣4,0)之間,其部分圖象如圖所示則下列結(jié)論:①4a﹣b=0;②c<0;③c>3a;④4a﹣2b>at2+bt(t為實(shí)數(shù));⑤點(diǎn)(﹣,y1),(﹣,y2),()是該拋物線上的點(diǎn),則y2<y1<y3,其中,正確結(jié)論的個數(shù)是( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】稱重五筐水果的質(zhì)量,若每筐以50千克為基準(zhǔn),超過基準(zhǔn)部分的千克數(shù)記為正數(shù),不足基準(zhǔn)部分的千克數(shù)記為負(fù)數(shù),甲組為實(shí)際稱重讀數(shù),乙組為記錄數(shù)據(jù),并把所得數(shù)據(jù)整理成如下統(tǒng)計表和未完成的統(tǒng)計圖(單位:千克)
實(shí)際稱量讀數(shù)折線統(tǒng)計圖 記錄數(shù)據(jù)折線統(tǒng)計圖
⑴補(bǔ)充完整乙組數(shù)據(jù)的折線統(tǒng)計圖;
⑵①甲、乙兩組數(shù)據(jù)的平均數(shù)分別為、,寫出與之間的等量關(guān)系;
②甲、乙兩組數(shù)據(jù)的平均數(shù)分別為、,比較與的大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線 y =m x2 -2m x+3 (m ≠0) 與 x 軸交于點(diǎn) A (a, 0) 和 B (b, 0) .
(1)若 a =-1,求 m, b 的值;
(2)若 2m +n =3 ,求證:拋物線的頂點(diǎn)在直線 y =m x+ n 上;
(3)拋物線上有兩點(diǎn) P (x1, p) 和 Q (x2 , q) ,若 x1 <1 <x2 ,且 x1 +x2 >2 ,試比較 p 與 q 的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com