由直線y=kx+2k-1和直線y=(k+1)x+2k+1(k是正整數(shù))與x軸及y軸所圍成的圖形面積為S,則S的最小值是
7
4
7
4
分析:首先用k表示出兩條直線與坐標(biāo)軸的交點(diǎn)坐標(biāo),然后表示出圍成的面積S,根據(jù)得到的函數(shù)的取值范圍確定其最值即可.
解答:解:y=kx+2k-1恒過(-2,-1),
y=(k+1)x+2k+1也恒過(-2,-1),
k為正整數(shù),那么,k≥1,且k∈Z
如圖,
直線y=kx+2k-1與X軸的交點(diǎn)是A(
-(2k-1)
k
,0),與y軸的交點(diǎn)是B(0,2k-1)
直線y=(k+1)x+2k+1與X軸的交點(diǎn)是C(
-(2k+1)
k+1
,0),與y軸的交點(diǎn)是D(0,2k+1),
那么,S四邊形ABDC=S△COD-S△AOB,
=
1
2
(OC•OD-OA•OB),
=
1
2
[
(2k+1)2
k+1
-
(2k-1)2
k
],
=
1
2
(4-
1
k2+k
),
=2-
1
2k2+2k

又,k≥1,且k∈Z,
那么,2-
1
2k2+2k
在定義域k≥1上是增函數(shù),
因此,當(dāng)k=1時(shí),四邊形ABDC的面積最小,
最小值S=2-
1
4
=
7
4
點(diǎn)評:本題考查了兩條指向相交或平行問題,解題的關(guān)鍵是用k表示出直線與坐標(biāo)軸的交點(diǎn)坐標(biāo)并用k表示出圍成的三角形的面積,從而得到函數(shù)關(guān)系式,利用函數(shù)的知識其最值問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

由直線y=kx+2k-1和直線y=(k+1)x+2k+1(k是正整數(shù))與x軸及y軸所圍成的圖形面積為S,則S的最小值是________.

查看答案和解析>>

同步練習(xí)冊答案