【題目】飛機著陸后滑行的距離S(單位:m)關于滑行時間t(單位:s)的函數解析式是:S=60t﹣1.5t2
(1)直接指出飛機著陸時的速度;
(2)直接指出t的取值范圍;
(3)畫出函數S的圖象并指出飛機著陸后滑行多遠才能停下來?
【答案】
(1)
解:飛機著陸時的速度V=60;
(2)
解:當S取得最大值時,飛機停下來,
則S=60t﹣1.5t2=﹣1.5(x﹣20)2+600,
此時t=20
因此t的取值范圍是0≤t≤20;
(3)
解:如圖,
S=60t﹣1.5t2=﹣1.5(x﹣20)2+600.
飛機著陸后滑行600米才能停下來.
【解析】(1)直接由函數解析式得出答案即可;(2)由于飛機著陸,不會倒著跑,所以當S取得最大值時,t也取得最大值,求得t的取值范圍即可;(3)利用配方法求得函數的最值,也就是飛機著陸后滑行的最遠距離.
【考點精析】利用二次函數的圖象和二次函數的性質對題目進行判斷即可得到答案,需要熟知二次函數圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+mx(m>0且m≠1)與x軸交于原點O和點A,點B的坐標為(1,﹣1),連結AB,將線段AB繞點A順時針旋轉90°得到線段AC,連結OB、OC.
(1)求點A的橫坐標.(用含m的代數式表示).
(2)若m=3,則點C的坐標為 .
(3)當點C與拋物線的頂點重合時,求四邊形ABOC的面積.
(4)結合m的取值范圍,直接寫出∠AOC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把兩個全等的等腰直角三角板(直角邊長為4)疊放在一起,且三角板EFG的直角頂點G位于三角板ABC的斜邊中點處.現將三角板EFG繞G點按順時針方向旋轉α度(0°<α<90°)(如圖1),四邊形GKCH為兩三角板的重疊部分.
(1)猜想BH與CK有怎樣的數量關系?并證明你的結論;
(2)連接HK(如圖2),在上述旋轉過程中,設BH=x,△GKH的面積為y,
①求y與x之間的函數關系式,并寫出自變量x的取值范圍;
②當△GKH的面積恰好等于△ABC面積的 ,求x.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將△ABC繞O點順時針旋轉50°得△A1B1C1(A、B分別對應A1、B1),則直線AB與直線A1B1的夾角(銳角)為( )
A.130°
B.50°
C.40°
D.60°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在一次測繪活動中,某同學站在點A處觀測停放于B、C兩處的小船,測得船B在點A北偏東75°方向150米處,船C在點A南偏東15°方向120米處,則船B與船C之間的距離為______米(精確到0.1).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是二次函數y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),該拋物線的對稱軸為直線x=﹣1,若點C(﹣ ,y1),D(﹣ ,y2),E( ,y3)均為函數圖象上的點,則y1 , y2 , y3的大小關系為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于點D,DE⊥AB,垂足為E,且AB=6cm,則△DEB的周長為( )
A. 4cm B. 6cm C. 8cm D. 10cm
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com