【題目】將某雷達(dá)測速區(qū)監(jiān)測到的一組汽車的時速數(shù)據(jù)整理,得到其頻數(shù)分布表(未完成):
數(shù)據(jù)段 | 30~40 | 40~50 | 50~60 | 60~70 | 70~80 | 總計 |
頻 數(shù) | 10 | 40 | | | 20 | |
百分比 | 5% | | 40% | | 10% | |
注:30~40為時速大于等于30千米而小于40千米,其他類同.
(1)請你把表中的數(shù)據(jù)填寫完整;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)如果此路段汽車時速超過60千米即為違章,則違章車輛共有多少輛?
【答案】(1)填表見解析;(2)圖形見解析;(3)違章車輛共有70輛.
【解析】
試題(1)用30~40的頻數(shù)除以百分比求出總頻數(shù),然后分別計算求出相應(yīng)的頻數(shù)或百分比,然后填表即可;
(2)根據(jù)(1)的數(shù)據(jù)補(bǔ)全直方圖即可;
(3)求出后兩組的頻數(shù)之和即可.
試題解析:(1)總頻數(shù)為10÷5%=200,40~50,×100%=20%,50~60,200×40%=80,
200﹣10﹣40﹣80﹣20=50,×100%=25%;
填表如下:
數(shù)據(jù)段 | 30~40 | 40~50 | 50~60 | 60~70 | 70~80 | 總計 |
頻 數(shù) | 10 | 40 | 80 | 50 | 20 | 200 |
百分比 | 5% | 20% | 40% | 25% | 10% | 100% |
(2)補(bǔ)全頻數(shù)分布直方圖如圖所示;
(3)違章車輛共有50+20=70(輛).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】a,b分別是數(shù)軸上兩個不同的點A,B所表示的有理數(shù),且=5,=2,A,B兩點在數(shù)軸上的位置如圖所示:
(1) 試確定數(shù)a,b;
(2) A,B兩點相距多少個單位長度?
(3)若C點在數(shù)軸上,C點B點的距離是C點到A點距離的,求C點表示的數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:我們知道的幾何意義是在數(shù)軸上數(shù)對應(yīng)的點與原點的距離,即,也就是說,表示在數(shù)軸上數(shù)與數(shù)對應(yīng)點之間的距離.這個結(jié)論可以推廣為:表示在數(shù)軸上數(shù)與對應(yīng)點之間的距離.
例 已知,求的值.
解:在數(shù)軸上與原點距離為的點的對應(yīng)數(shù)為和,即的值為和.
例 已知,求的值.
解:在數(shù)軸上與的距離為點的對應(yīng)數(shù)為和,即的值為和.
仿照閱讀材料的解法,解決下列問題:
(1)已知,求的值;
(2)已知,求的值;
(3)若數(shù)軸上表示的點在與之間,則的值為_________;
(4)當(dāng)滿足_________時,則的值最小,最小值是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)甲、乙兩種商品,已知每件甲種商品的價格比每件乙種商品的價格貴10元,用350元購買甲種商品的件數(shù)恰好與用300元購買乙種商品的件數(shù)相同.
(1)求甲、乙兩種商品每件的價格各是多少元?
(2)計劃購買這兩種商品共50件,且投入的經(jīng)費(fèi)不超過3200元,那么,最多可購買多少件甲種商品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,給正五邊形的頂點依次編號為1,2,3,4,5.若從某一頂點開始,沿正五邊形的邊順時針方向行走,頂點編號的數(shù)字是幾,就走幾個邊長,則稱這種走法為一次“移位”.如:小宇在編號為3的頂點上時,那么他應(yīng)走3個邊長,即從3→4→5→1為第一次“移位”,這時他到達(dá)編號為1的頂點;然后從1→2為第二次“移位”.若小宇從編號為2的頂點開始,第15次“移位”后,則他所處頂點的編號為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:a、b為有理數(shù),下列說法:①若 a、b互為相反數(shù),則;②若則;③若,則;④若,則是正數(shù).其中正確的有
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩城間的鐵路路程為1600千米,經(jīng)過技術(shù)改造,列車實施了提速,提速后比提速前速度增加了20千米/小時,列車從甲城到乙城行駛時間減少4小時,這條鐵路在現(xiàn)有條件下安全行駛速度不得超過140千米/小時,請你用學(xué)過的知識說明在這條鐵路的現(xiàn)有條件下列車是否還可以再提速。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】類比學(xué)習(xí):一動點沿著數(shù)軸先向右平移3個單位長度,再向左平移2個單位長度,相當(dāng)于向右平移1個單位長度.用實數(shù)加法表示為3+(-2)=1.若坐標(biāo)平面上的點有如下平移:沿x軸方向平移的數(shù)量為a(向右為正,向左為負(fù),平移|a|個單位長度),沿y軸方向平移的數(shù)量為b(向上為正,向下為負(fù),平移|b|個單位長度),則把有序數(shù)對{a,b}叫做這一平移的“平移量”,“平移量”{a,b}與“平移量”{c,d}的加法運(yùn)算法則為{a,b}+{c,d}={a+c,b+d}.
解決問題:
(1)計算:{3,1}+{1,2},{1,2}+{3,1}.
(2)動點P從坐標(biāo)原點O出發(fā),先按照“平移量”{3,1}平移到點A,再按照“平移量”{1,2}平移到點B;若先把動點P按照“平移量”{1,2}平移到點C,再按照“平移量”{3,1}平移,最后的位置還是點B嗎?在圖①中畫出四邊形OABC.
(3)如圖②所示,一艘船從碼頭O出發(fā),先航行到湖心島碼頭P(2,3),再從碼頭P航行到碼頭Q(5,5),最后回到出發(fā)點O.請用“平移量”加法算式表示它的航行過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,直線AB:y=k1x+b1與直線AD:y=k2x+b2相交于點A(1,3),且點B坐標(biāo)為(0,2),直線AB交x軸負(fù)半軸于點C,直線AD交x軸正半軸于點D.
(1)求直線AB的函數(shù)解析式;
(2)若△ACD的面積為9,解不等式:k2x+b2>0;
(3)若點M為x軸一動點,當(dāng)點M在什么位置時,使AM+BM的值最。壳蟪龃藭r點M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com