如圖,Rt△ABO的頂點(diǎn)A是雙曲線y=與直線y=﹣x﹣(k+1)在第二象限的交點(diǎn).AB⊥x軸于B,且SABO=
(1)求這兩個(gè)函數(shù)的解析式;
(2)求直線與雙曲線的兩個(gè)交點(diǎn)A、C的坐標(biāo)和△AOC的面積.

(1)y=﹣,y=﹣x+2
(2)A為(﹣1,3),C為(3,﹣1),面積是4

解析試題分析:(1)欲求這兩個(gè)函數(shù)的解析式,關(guān)鍵求k值.根據(jù)反比例函數(shù)性質(zhì),k絕對(duì)值為且為負(fù)數(shù),由此即可求出k;
(2)交點(diǎn)A、C的坐標(biāo)是方程組的解,解之即得;
(3)從圖形上可看出△AOC的面積為兩小三角形面積之和,根據(jù)三角形的面積公式即可求出.
解:(1)設(shè)A點(diǎn)坐標(biāo)為(x,y),且x<0,y>0,
則SABO=•|BO|•|BA|=•(﹣x)•y=,
∴xy=﹣3,
又∵y=
即xy=k,
∴k=﹣3.
∴所求的兩個(gè)函數(shù)的解析式分別為y=﹣,y=﹣x+2;
(2)由y=﹣x+2,
令x=0,得y=2.
∴直線y=﹣x+2與y軸的交點(diǎn)D的坐標(biāo)為(0,2),
A、C兩點(diǎn)坐標(biāo)滿足
∴交點(diǎn)A為(﹣1,3),C為(3,﹣1),
∴SAOC=SODA+SODC=OD•(|x1|+|x2|)=×2×(3+1)=4.

點(diǎn)評(píng):此題首先利用待定系數(shù)法確定函數(shù)解析式,然后利用解方程組來確定圖象的交點(diǎn)坐標(biāo),及利用坐標(biāo)求出線段和圖形的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

國(guó)家推行“節(jié)能減排,低碳經(jīng)濟(jì)”的政策后,某企業(yè)推出一種叫“CNG”的改燒汽油為天然氣的裝置,每輛車改裝費(fèi)為b元.據(jù)市場(chǎng)調(diào)查知:每輛車改裝前、后的燃料費(fèi)(含改裝費(fèi))(單位:元)與正常運(yùn)營(yíng)時(shí)間(單位:天)之間分別滿足關(guān)系式:、,如圖所示.

試根據(jù)圖像解決下列問題:
(1)每輛車改裝前每天的燃料費(fèi)=     元,每輛車的改裝費(fèi)b=    元.正常運(yùn)營(yíng)    天后,就可以從節(jié)省燃料費(fèi)中收回改裝成本.
(2)某出租汽車公司一次性改裝了100輛車,因而,正常運(yùn)營(yíng)多少天后共節(jié)省燃料費(fèi)40萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

義潔中學(xué)計(jì)劃從榮威公司購(gòu)買A、B兩種型號(hào)的小黑板,經(jīng)洽談,購(gòu)買一塊A型小黑板比買一塊B型小黑板多用20元.且購(gòu)買5塊A型小黑板和4塊B型小黑板共需820元.
(1)求購(gòu)買一塊A型小黑板、一塊B型小黑板各需要多少元?
(2)根據(jù)義潔中學(xué)實(shí)際情況,需從榮威公司購(gòu)買A、B兩種型號(hào)的小黑板共60塊,要求購(gòu)買A、B兩種型號(hào)小黑板的總費(fèi)用不超過5240元.并且購(gòu)買A型小黑板的數(shù)量應(yīng)大于購(gòu)買A、B種型號(hào)小黑板總數(shù)量的.請(qǐng)你通過計(jì)算,求出義潔中學(xué)從榮威公司購(gòu)買A、B兩種型號(hào)的小黑板有哪幾種方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線MN與x軸,y軸分別相交于A,C兩點(diǎn),分別過A,C兩點(diǎn)作x軸,y軸的垂線相交于B點(diǎn),且OA,OC(OA>OC)的長(zhǎng)分別是一元二次方程x2﹣14x+48=0的兩個(gè)實(shí)數(shù)根.

(1)求C點(diǎn)坐標(biāo);
(2)求直線MN的解析式;
(3)在直線MN上存在點(diǎn)P,使以點(diǎn)P,B,C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,請(qǐng)直接寫出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

為了落實(shí)黨中央提出的“惠民政策”,我市今年計(jì)劃開發(fā)建設(shè)A、B兩種戶型的“廉租房”共40套.投入資金不超過200萬(wàn)元,又不低于198萬(wàn)元.開發(fā)建設(shè)辦公室預(yù)算:一套A型“廉租房”的造價(jià)為5.2萬(wàn)元,一套B型“廉租房”的造價(jià)為4.8萬(wàn)元.
(1)請(qǐng)問有幾種開發(fā)建設(shè)方案?
(2)哪種建設(shè)方案投入資金最少?最少資金是多少萬(wàn)元?
(3)在(2)的方案下,為了讓更多的人享受到“惠民”政策,開發(fā)建設(shè)辦公室決定通過縮小“廉租房”的面積來降低造價(jià)、節(jié)省資金.每套A戶型“廉租房”的造價(jià)降低0.7萬(wàn)元,每套B戶型“廉租房”的造價(jià)降低0.3萬(wàn)元,將節(jié)省下來的資金全部用于再次開發(fā)建設(shè)縮小面積后的“廉租房”,如果同時(shí)建設(shè)A、B兩種戶型,請(qǐng)你直接寫出再次開發(fā)建設(shè)的方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩工程隊(duì)維修同一段路面,甲隊(duì)先清理路面,乙隊(duì)在甲隊(duì)清理后鋪設(shè)路面.乙隊(duì)在中途停工了一段時(shí)間,然后按停工前的工作效率繼續(xù)工作.在整個(gè)工作過程中,甲隊(duì)清理完的路面長(zhǎng)y(米)與時(shí)間x(時(shí))的函數(shù)圖象為線段OA,乙隊(duì)鋪設(shè)完的路面長(zhǎng)y(米)與時(shí)間x(時(shí))的函數(shù)圖象為折線BC﹣CD﹣DE,如圖所示,從甲隊(duì)開始工作時(shí)計(jì)時(shí).

(1)分別求線段BC、DE所在直線對(duì)應(yīng)的函數(shù)關(guān)系式.
(2)當(dāng)甲隊(duì)清理完路面時(shí),求乙隊(duì)鋪設(shè)完的路面長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

為了節(jié)約資源,科學(xué)指導(dǎo)居民改善居住條件,小王向房管部門提出了一個(gè)購(gòu)買商品房的政策性方案.

人均住房面積(平方米)
單價(jià)(萬(wàn)元/平方米)
不超過30(平方米)
0.3
超過30平方米不超過m(平方米)部分(45≤m≤60)
0.5
超過m平方米部分
0.7
根據(jù)這個(gè)購(gòu)房方案:
(1)若某三口之家欲購(gòu)買120平方米的商品房,求其應(yīng)繳納的房款;
(2)設(shè)該家庭購(gòu)買商品房的人均面積為x平方米,繳納房款y萬(wàn)元,請(qǐng)求出y關(guān)于x的函數(shù)關(guān)系式;
(3)若該家庭購(gòu)買商品房的人均面積為50平方米,繳納房款為y萬(wàn)元,且57<y≤60 時(shí),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

把拋物線y=﹣2x2先向右平移1個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度后,所得函數(shù)的表達(dá)式為( 。

A.y=﹣2(x+1)2+2 B.y=﹣2(x+1)2﹣2
C.y=﹣2(x﹣1)2+2 D.y=﹣2(x﹣1)2﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣1,0),頂點(diǎn)坐標(biāo)為(1,n),與y軸的交點(diǎn)在(0,2)、(0,3)之間(包含端點(diǎn)),則下列結(jié)論:①當(dāng)x>3時(shí),y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正確的是( 。

A.①②B.③④C.①④D.①③

查看答案和解析>>

同步練習(xí)冊(cè)答案