二次函數(shù)y=﹣x2+2x+m的圖象與x軸交于A.B兩點(diǎn)(B在A右側(cè)),頂點(diǎn)為C,且A.B兩點(diǎn)間的距離等于點(diǎn)C到x軸的距離的2倍.
(1)求此拋物線的解析式.
(2)求直線BC的解析式.
(3)若點(diǎn)P在拋物線的對稱軸上,且⊙P與x軸以及直線BC都相切,求點(diǎn)P的坐標(biāo).
【提示:(+1)(-1)=1】
(1)y=﹣x2+2x
(2)y=﹣x+2
(3)解:設(shè)點(diǎn)P(1,n),過點(diǎn)P作PD⊥BC,則PC=n,∴1-n=n,∴n=-1,∴點(diǎn)P(1,-1).
【解析】(1)由拋物線解析式可知y=﹣x2+2x+m的頂點(diǎn)橫坐標(biāo)為1,則縱坐標(biāo)為m+1,根據(jù)A.B兩點(diǎn)間的距離等于點(diǎn)C到x軸的距離的2倍可得解得m=0,所以拋物線解析式為y=﹣x2+2x ;
(2)點(diǎn)B坐標(biāo)為(2,0),點(diǎn)C坐標(biāo)為(1,1),可用待定系數(shù)法求得直線BC的解析式為y=﹣x+2 ;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
一次函數(shù)y=x-3的圖象與x軸,y軸分別交于點(diǎn)A,B.一個(gè)二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(diǎn)A,B.
(1)求點(diǎn)A,B的坐標(biāo),并畫出一次函數(shù)y=x-3的圖象;
(2)求二次函數(shù)的解析式及它的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在直角坐標(biāo)平面內(nèi),O為坐標(biāo)原點(diǎn),A點(diǎn)的坐標(biāo)為(1,0),B點(diǎn)在x軸上且在點(diǎn)A的右側(cè),AB=OA,過點(diǎn)A和B作x軸的垂線分別交二次函數(shù)y=x2的圖象于點(diǎn)C和D,直線OC交BD于M,直線CD交y軸于點(diǎn)H。記C、D的橫坐標(biāo)分別為xC,xD,點(diǎn)H的縱坐標(biāo)yH。
(1)證明:①S△CMD∶S梯形ABMC=2∶3
②xC·xD=-yH
(2)若將上述A點(diǎn)坐標(biāo)(1,0)改為A點(diǎn)坐標(biāo)(t,0),t>0,其他條件不變,結(jié)論S△CMD:S梯形ABMC=2∶3是否仍成立?請說明理由。
(3)若A的坐標(biāo)(t,0)(t>0),又將條件y=x2改為y=ax2(a>0),其他條件不變,那么XC、XD和yH又有怎樣的數(shù)量關(guān)系?寫出關(guān)系式,并證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年福建省福州市九年級上學(xué)期期末考試數(shù)學(xué)卷 題型:單選題
已知二次函數(shù)y=x2-x+,當(dāng)自變量x取m時(shí),對應(yīng)的函數(shù)值小于0,當(dāng)自變量x取m-1、m+1時(shí),對應(yīng)的函數(shù)值為y1、y2,則y1、y2滿足
A.y1>0,y2>0 | B.y1<0,y2>0 | C.y1<0,y2<0 | D.y1>0,y2<0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年九年級第二學(xué)期第一階段考試數(shù)學(xué)卷(帶解析) 題型:填空題
二次函數(shù)y=x2-6x+c的圖象的頂點(diǎn)與原點(diǎn)的距離為5,則c=______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com