【題目】如圖,直線軸交于點,與軸交于點,拋物線經(jīng)過、兩點.

1)求拋物線的解析式;

2)若是拋物線上一點,且點坐標(biāo)為,點為拋物線對稱軸上一點,求的最小值;

3)點為直線上的動點,點為拋物線上的動點,當(dāng)以點、為頂點的四邊形是平行四邊形時,求點的坐標(biāo).

【答案】1;(2QPQA的最小值為;(3)滿足條件的點M的坐標(biāo)為

【解析】

1)先通過直線軸交于點,與軸交于點計算出A、B點的坐標(biāo),再代入計算即可;

2)根據(jù)對稱性知A點關(guān)于拋物線對稱軸的對稱點是,連接PC,則QPQA的最小值就是PC,從而計算即可;

3)根據(jù)平行四邊形的性質(zhì)分為以OB為邊和對角線兩種情況分類討論計算.

1)∵直線x軸交于點A,與y軸交于點B

A2,0),B01

∵拋物線y=-x2bxc經(jīng)過A、B兩點

∴拋物線解析式為

2)如解圖①,由(1)知,拋物線解析式為

∴拋物線的對稱軸為直線,

拋物線與x軸的另一交點為

∵點A與點C關(guān)于對稱軸對稱

QPQA的最小值

就是

3)①OB為平行四邊形的邊時,MNOB,MNOB

∵點N在直線AB

∴設(shè)

.-m22m1

解得,m1

.-m22m=-1

解得,

②當(dāng)OB為對角線時,OBMN互相平分,交點為H,

OHBH,MHNH

B0,1),O00),

,

設(shè),

,

即:滿足條件的點M的坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在筆山銀子巖坡頂處的同一水平面上有一座移動信號發(fā)射塔,

筆山職中數(shù)學(xué)興趣小組的同學(xué)在斜坡底處測得該塔的塔頂的仰角為,然后他們沿著坡度為的斜坡攀行了米,在坡頂處又測得該塔的塔頂的仰角為.求:

坡頂到地面的距離;

移動信號發(fā)射塔的高度(結(jié)果精確到米).

(參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線x軸交于點ABAB的左側(cè)),拋物線的對稱軸與x軸交于點D,且OB=2OD

1)當(dāng)時,

①寫出拋物線的對稱軸;

②求拋物線的表達式;

2)存在垂直于x軸的直線分別與直線和拋物線交于點P,Q,且點P,Q均在x軸下方,結(jié)合函數(shù)圖象,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了增強學(xué)生體質(zhì),決定開設(shè)以下體育課外活動項目:A籃球 B乒乓球C羽毛球 D足球,為了解學(xué)生最喜歡哪一種活動項目,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

(1)這次被調(diào)查的學(xué)生共有   人;

(2)請你將條形統(tǒng)計圖(2)補充完整;

(3)在平時的乒乓球項目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)計算:;

2)尺規(guī)作圖.如圖,已知和線段a,求作,使,,.(不寫作法,保留作圖痕跡.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點,將點向右平移6個單位,得到點

(1)直接寫出點的坐標(biāo);

(2)若拋物線經(jīng)過點,,求該拋物線的表達式;

(3)若拋物線的頂點在直線上移動,當(dāng)拋物線與線段有且只有一個公共點時,求拋物線頂點橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年疫情期間,為防止疫惰擴散,人們見面的機會少了,但是隨著通訊技術(shù)迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.為此,李老師設(shè)計了你最喜歡的溝通方式調(diào)查問卷(每人必選且只選一種),進行調(diào)查.將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

1)這次參與調(diào)查的共有_______人:在扇形統(tǒng)計圖中,表示微信的扇形圓心角的度數(shù)為_______;其它溝通方式所占的百分比為_______;

2)將條形統(tǒng)計圖補充完整;

3)如果我國有13億人在使用手機.請估計最喜歡用微信進行溝通的人數(shù):并:用科學(xué)計數(shù)法表示;在全國使用手機的人中隨機抽取一人,用頻率估計概率,求抽取的恰好使用“QQ”的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家具商場計劃購進某種餐桌和餐椅,已知每張餐椅的進價比每張餐桌的進價便宜110元,餐桌零售價270/張,餐椅零售價70/張.已知用600元購進的餐桌數(shù)量與用160元購進的餐椅數(shù)量相同.

1)求該家具商場計劃購進的餐桌、餐椅的進價分別為多少元?

2)若該商場購進餐椅的數(shù)量是餐桌數(shù)量的5倍還多20張,且餐桌和餐椅的總數(shù)量不超過200張.該商場計劃將一半的餐桌成套(一張餐桌和四張餐椅配成一套)銷售,售價500/套,其余餐桌、餐椅以零售方式銷售.請問該商場怎樣進貨,才能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市購進某種水果的成本為20/kg,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種水果在未來40天的銷售單價p(元/kg)與時間 t(天)之間的函數(shù)表達式為pt+30;(1≤t≤40,t為整數(shù)),試銷售當(dāng)天(正式銷售前一天)售出400kg,之后每天銷售量比前一天減少5千克;

1)試求每天銷售利潤W1(元)與時間t(天)之間的函數(shù)關(guān)系式;

2)在銷售前20天里,何時利潤為4320元?

3)為回饋新老顧客的支持,在實際銷售中,超市決定每銷售1kg水果就捐贈2元利潤給精準(zhǔn)扶貧對象.在日銷售量不低于300kg的情況下,何時超市獲利最多?

查看答案和解析>>

同步練習(xí)冊答案