【題目】如圖,已知矩形ABCD中,BC=2AB,點E在BC邊上,連接DE、AE,若EA平分∠BED,則的值為( 。
A.B.C.D.
【答案】C
【解析】
過點A作AF⊥DE于F,根據(jù)角平分線上的點到角的兩邊距離相等可得AF=AB,利用全等三角形的判定和性質(zhì)以及矩形的性質(zhì)解答即可.
解:如圖,過點A作AF⊥DE于F,
在矩形ABCD中,AB=CD,
∵AE平分∠BED,
∴AF=AB,
∵BC=2AB,
∴BC=2AF,
∴∠ADF=30°,
在△AFD與△DCE中
∵∠C=∠AFD=90°,
∠ADF=∠DEC,
AF=DC,,
∴△AFD≌△DCE(AAS),
∴△CDE的面積=△AFD的面積=
∵矩形ABCD的面積=ABBC=2AB2,
∴2△ABE的面積=矩形ABCD的面積﹣2△CDE的面積=(2﹣)AB2,
∴△ABE的面積=,
∴,
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小明主設(shè)計的“作一個含30°角的直角三角形”的尺規(guī)作圖過程.
已知:直線l.
求作:△ABC,使得∠ACB=90°,∠ABC=30°.
作法:如圖,
①在直線l上任取兩點O,A;
②以點O為圓心,OA長為半徑畫弧,交直線l于點B;
③以點A為圓心,AO長為半徑畫弧,交于點C;
④連接AC,BC.
所以△ABC就是所求作的三角形.
根據(jù)小明設(shè)計的尺規(guī)作圖過程:
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:在⊙O中,AB為直徑,
∴∠ACB=90°(① ),(填推理的依據(jù))
連接OC
∵OA=OC=AC,
∴∠CAB=60°,
∴∠ABC=30°(② ),(填推理的依據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明的袋子中裝有分別標(biāo)注數(shù)字為1,2、3的三個小球,這些球除標(biāo)注的數(shù)字外都相同.
(1)攪勻后從中任意摸出一個球,標(biāo)注的數(shù)字恰好為2的概率是________;
(2)攪勻后從中任意摸出一個球,記錄下數(shù)字后放回袋中并攪勻,再從袋中任意摸出一個球,求兩次數(shù)字的和大于3的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC.
(1)若以點A為圓心的圓與邊BC相切于點D,請在下圖中作出點D;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)
(2)在(1)的條件下,若該圓與邊AC相交于點E,連接DE,當(dāng)∠BAC=100°時,求∠AED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將正方形OABC放在平面直角坐標(biāo)系中,O是坐標(biāo)原點,點A的坐標(biāo)是(2,3),則C點坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△EBC中,∠B=90°,A為BE邊上一點,以邊AC上的點O為圓心、OA為半徑的圓O與EC相切,D為切點,AD∥BC.
(1)求證:∠E=∠ACB.
(2)若AD=1,,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,點,分別在,上,將沿折疊,使點落在上的點處,又將沿折疊,使點落在直線與的交點處.
(1)求證:點在的角平分線上;
(2)求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某斜拉橋引申出的部分平面圖,AE,CD是兩條拉索,其中拉索CD與水平橋面BE的夾角為72°,其底端與立柱AB底端的距離BD為4米,兩條拉索頂端距離AC為2米,若要使拉索AE與水平橋面的夾角為35°,請計算拉索AE的長.(結(jié)果精確到0.1米)(參考數(shù)據(jù):sin35°≈,cos35°≈,tan35°≈,sin72°≈,cos72°≈,tan72°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題10分)如圖,在平面直角坐標(biāo)系xOy中,直線與y軸交于點C,與x軸交于點B,拋物線經(jīng)過B、C兩點,與x軸的正半軸交于另一點A,且OA :OC="2" :7.
(1)求拋物線的解析式;
(2)點D為線段CB上,點P在對稱軸的右側(cè)拋物線上,PD=PB,當(dāng)tan∠PDB=2,求P點的坐標(biāo);
(3)在(2)的條件下,點Q(7,m)在第四象限內(nèi),點R在對稱軸的右側(cè)拋物線上,若以點P、D、Q、R為頂點的四邊形為平行四邊形,求點Q、R的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com