【題目】如圖,正方形ABCD內有兩條相交線段MN,EF,M,N,E,F分別在邊AB,CD,AD,BC上.小明認為:若MN=EF,則MN⊥EF;小亮認為:若MN⊥EF,則MN=EF.你認為( )
A. 僅小明對 B. 僅小亮對 C. 兩人都對 D. 兩人都不對
【答案】C
【解析】
分別過點E作EG⊥BC于點G,過點M作MP⊥CD于點P,設EF與MN相交于點O,MP與EF相交于點Q,根據正方形的性質可得EG=MP;對于小明的說法,先利用“HL”證明Rt△EFG≌Rt△MNP,根據全等三角形對應角相等可得∠MNP=∠EFG,再根據角的關系推出∠EQM=∠MNP,然后根據∠MNP+∠NMP=90°得到∠NMP+∠EQM=90°,從而得到∠MOQ=90°,根據垂直的定義即可證得MN⊥EF;對于小亮的說法,先推出∠EQM=∠EFG,∠EQM=∠MNP,然后得到∠EFG=∠MNP,然后利用“角角邊”證明△EFG≌△MNP,根據全等三角形對應邊相等可得EF=MN.
如圖,過點E作EG⊥BC于點G,過點M作MP⊥CD于點P,設EF與MN相交于點O,MP與EF相交于點Q,
∵四邊形ABCD是正方形,
∴EG=MP,
對于小明的說法:
在Rt△EFG和Rt△MNP中,
,
∴Rt△EFG≌Rt△MNP(HL),
∴∠MNP=∠EFG,
∵MP⊥CD,∠C=90°,
∴MP∥BC,
∴∠EQM=∠EFG=∠MNP,
又∵∠MNP+∠NMP=90°,
∴∠EQM+∠NMP=90°,
在△MOQ中,∠MOQ=180°-(∠EQM+∠NMP)=180°-90°=90°,
∴MN⊥EF,
故甲正確.
對小亮的說法:
∵MP⊥CD,∠C=90°,
∴MP∥BC,
∴∠EQM=∠EFG,
∵MN⊥EF,
∴∠NMP+∠EQM=90°,
又∵MP⊥CD,
∴∠NMP+∠MNP=90°,
∴∠EQM=∠MNP,
∴∠EFG=∠MNP,
在△EFG和△MNP中,
,
∴△EFG≌△MNP(AAS),
∴MN=EF,故小亮的說法正確,
綜上所述,兩個人的說法都正確.
故選C.
科目:初中數學 來源: 題型:
【題目】如圖是某公園里一處矩形風景欣賞區(qū)ABCD,長AB=50米,寬BC=25米,為方便游人觀賞,公園特意修建了如圖所示的小路(圖中非陰影部分),小路的寬均為1米,那小明沿著小路的中間,從出口A到出口B所走的路線(圖中虛線)長為___________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將△ABC沿直線DE折疊后,使得點B與點A重合.已知AC=5cm,△ADC的周長為17cm,則BC的長為( )
A.7cm
B.10cm
C.12cm
D.22cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,頂點A,C分別在坐標軸上,頂點B的坐標為(4,2).過點D(0,3)和E(6,0)的直線分別與AB,BC交于點M,N.
(1)求直線DE的解析式和點M的坐標;
(2)若反比例函數 (x>0)的圖象經過點M,求該反比例函數的解析式,并通過計算判斷點N是否在該函數的圖象上;
(3)若反比例函數 (x>0)的圖象與△MNB有公共點,請直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,長方形ABCD中,AB=2cm,BC=4cm,點P按照順時針方向由點A運動到點D,設點P運動的路程為圖中點P、B、D圍成的圖形的面積為
(1)寫出點P、B、D圍成的圖形的面積與之間的關系式和自變量的取值范圍;
(2)當取何值時,點P、B、D圍成的圖形的面積等于?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有七張正面分別標有數字﹣1、﹣2、0、1、2、3、4的卡片,除數字不同外其余全部相同.現將它們背面朝上,洗勻后從中隨機抽取一張,記卡片上的數字為m,則使關于x的方程 + =2的解為正數,且不等式組 無解的概率是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC外切于⊙O,切點分別為點D,E,F,∠A=60°,BC=7,⊙O的半徑為.求:(1)求BF+CE的值; (2)求△ABC的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】袋中裝有大小相同的2個紅球和2個綠球.
(1)先從袋中摸出1個球后放回,混合均勻后再摸出1個球.
①求第一次摸到綠球,第二次摸到紅球的概率;
②求兩次摸到的球中有1個綠球和1個紅球的概率;
(2)先從袋中摸出1個球后不放回,再摸出1個球,則兩次摸到的球中有1個綠球和1個紅球的概率是多少?請直接寫出結果.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com