【題目】求下列各式的值:
(1) (2)
(3) (4)
(5)+ (6)
【答案】(1);(2)-1;(3);(4);(5)4;(6)3或-9.
【解析】
(1)先把二次根式化為最簡二次根式,然后合并即可;
(2)利用平方差公式計算;
(3)先進(jìn)行二次根式的乘法運(yùn)算,然后化簡后合并即可;
(4)先把二次根式化為最簡二次根式,
(5)先進(jìn)行二次根式的乘法運(yùn)算,再利用零指數(shù)冪和負(fù)整數(shù)指數(shù)冪的意義計算,然后化簡后合并即可;
(6)先把方程變形為(x+3)2=36,然后利用平方根的定義求x.
(1)原式=5+2-6
=;
(2)原式=2-3
=-1;
(3)原式=3-6-3
=-6;
(4)原式=2--+3
=;
(5)原式=3+1-3+1+2
=4;
(6)(x+3)2=36,
x+3=±6,
所以x=3或-9.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD中,AB=9,AD=4.E為CD邊上一點(diǎn),CE=6. 點(diǎn)P從點(diǎn)B出發(fā),以每秒1個單位的速度沿著邊BA向終點(diǎn)A運(yùn)動,連接PE.設(shè)點(diǎn)P運(yùn)動的時間為t秒.
(1)當(dāng)t為何值時,△PAE為直角三角形?
(2)是否存在這樣的t,使EA恰好平分∠PED,若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,M、N分別是正方形ABCD邊DC、AB的中點(diǎn),分別以AE、BF為折痕,使點(diǎn)D、點(diǎn)C落在MN的點(diǎn)G處,則△ABG是 三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀與理解:
折紙,常常能為證明一個命題提供思路和方法.例如,在△ABC中,AB>AC(如圖),怎樣證明∠C>∠B呢?
把AC沿∠A的角平分線AD翻折,因?yàn)?/span>AB>AC,所以點(diǎn)C落在AB上的點(diǎn)處,即,據(jù)以上操作,易證明≌,所以,又因?yàn)?/span>>∠B,所以∠C>∠B.
感悟與應(yīng)用:
(1)如圖(a),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,試判斷AC和AD、BC之間的數(shù)量關(guān)系,并說明理由;
(2)如圖(b),在四邊形ABCD中,AC平分∠BAD,AC=16,AD=8,DC=BC=12,
① 求證:∠B+∠D=180°;
② 求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB為直徑的⊙O與弦CD相交于點(diǎn)E,且AC=2,AE= ,CE=1.則 的長是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,折疊長方形一邊AD,點(diǎn)D落在BC邊的點(diǎn)F處, 已知BC=10厘米,AB=8厘米,求FC和EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中BA=BC,點(diǎn)D是AB延長線上一點(diǎn),DF⊥AC于F交BC于E,
求證:△DBE是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD是高,CE是中線,點(diǎn)G是CE的中點(diǎn),且DG⊥CE,垂足為點(diǎn)G.
(1)求證:DC=BE;
(2)若∠AEC=54°,求∠BCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=21,BC=13,D是AC邊上一點(diǎn),BD=12,AD=16,
(1)若E是邊AB的中點(diǎn),求線段DE的長
(2)若E是邊AB上的動點(diǎn),求線段DE的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com