若一個(gè)平行四邊形的一邊長為6,一條對(duì)角線長為4,則另一條對(duì)角線a的取值范圍是 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
定義運(yùn)算,下面給出了關(guān)于這種運(yùn)算的幾個(gè)結(jié)論:
① ②
③若,則
④若,則
其中正確結(jié)論的序號(hào)是 .(在橫線上填上你認(rèn)為所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,與關(guān)于直線l對(duì)稱,且,則∠B的度數(shù)為( )
A.48° B.54° C.74° D.78°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
□ABCD的對(duì)角線相交于點(diǎn)O,分別添加下列條件:①AC⊥BD;②AB=BC;③AC平分∠BAD;④AO=DO,使得□ABCD是菱形的條件有 。(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
關(guān)于x的方程:的解是,;
(即)的解是;
的解是,;
的解是,;……
(1) 請觀察上述方程與解的特征,則關(guān)于于x的方程的解
(2) 用“方程的解”的概念對(duì)(1)的解進(jìn)行驗(yàn)證。
(3)由上述的觀察、比較、猜想、驗(yàn)證,可以得出結(jié)論: 如果方程的左邊是未知數(shù)與其倒數(shù)的倍數(shù)的和,方程的右邊的形式與左邊完全相同,只是把其中的未知數(shù)換成了某個(gè)常數(shù),那么這樣的方程可以直接得解,請用這個(gè)結(jié)論解關(guān)于x的方程:。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為(2,0)、(0,4),P是△AOB外接圓⊙C上的
一點(diǎn),且∠AOP=45°,則點(diǎn)P的坐標(biāo)為( , )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
右圖表示一圓柱形輸水管的橫截面,陰影部分為有水部分,如果輸水管的半徑為,
水面寬為,則水的最大深度為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com