【題目】已知ABCD的對角線AC與BD交于點O,下列結(jié)論不正確的是( )
A.當(dāng)AB=BC時,ABCD是菱形
B.當(dāng)AC⊥BD時,ABCD是菱形
C.當(dāng)OA=OB時,ABCD是矩形
D.當(dāng)∠ABD=∠CBD時,ABCD是矩形
【答案】D
【解析】解:A、根據(jù)菱形的定義可得,當(dāng)AB=AD時ABCD是菱形; B、根據(jù)對角線互相垂直的平行四邊形是菱形即可判斷,ABCD是菱形;
C、對角線相等的平行四邊形是矩形,命題正確;
D、當(dāng)∠ABD=∠CBD時,對角線平分∠ABC,ABCD是菱形,故命題錯誤.
故選D.
【考點精析】掌握平行四邊形的性質(zhì)和菱形的判定方法是解答本題的根本,需要知道平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分;任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程2x2﹣3x+1=0的根的情況是( 。
A.有兩個相等的實數(shù)根
B.有兩個不相等的實數(shù)根
C.只有一個實數(shù)根
D.沒有實數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】多項式15a3b2(a+b)c+10a2b(a+b)的公因式是( )
A.5a3b2(a+b)
B.a2b(a+b)
C.5ab(a+b)
D.5a2b(a+b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:S1=1+ + ,S2=1+ + ,S3=1+ + ,S4=1+ + ,S5=1+ + ,…則 =(用含n的代數(shù)式表示,其中n為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運算正確的是( )
A. 4a3·2a2=8a6 B. (-2x4)·(-3x4)=6x8
C. 5x3·3x4=8x7 D. (-x)·(-2x)2·(-3x)3=-108x6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,矩形的邊OA、OC分別落在x軸、y軸上,O為坐標(biāo)原點,且OA=8,OC=4,連接AC,將矩形OABC對折,使點A與點C重合,折痕ED與BC交于點D,交OA于點E,連接AD,如圖①.
(1)求點的坐標(biāo)和所在直線的函數(shù)關(guān)系式;
(2)的圓心始終在直線上(點除外),且始終與x軸相切,如圖②.
①求證: 與直線AD相切;
②圓心在直線AC上運動,在運動過程中,能否與y軸也相切?如果能相切,求出此時與x軸、y軸和直線AD都相切時的圓心的坐標(biāo);如果不能相切,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com