如圖,菱形ABCD中,∠ADC=120°,AB=10,則BD=______AC=______,菱形ABCD的面積=______.
∵四邊形ABCD是菱形,∠ADC=120°,
∴∠DAB=60°,
∴△ABD是等邊三角形,
∴BD=AB=10,
在Rt△AOB中,AO=
AB2-OB2
=5
3
,
∴AC=2AO=10
3
,
∴S菱形ABCD=
1
2
AC×BD=50
3

故答案為:10、10
3
、50
3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,?ABCD中,AE,CF分別是∠BAD,∠BCD的角平分線,請(qǐng)?zhí)砑右粋(gè)條件______使四邊形AECF為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知四邊形ABCD是菱形,∠A=72°,將它分割成如圖所示的四個(gè)等腰三角形,那么∠1+∠2+∠3=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在邊長(zhǎng)為6的菱形ABCD中,動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿A?B?C向終點(diǎn)C運(yùn)動(dòng),連接DM交AC于點(diǎn)N.

(1)如圖1,當(dāng)點(diǎn)M在AB邊上時(shí),連接BN:
①求證:△ABN≌△ADN;
②若∠ABC=60°,AM=4,∠ABN=α,求點(diǎn)M到AD的距離及tanα的值.
(2)如圖2,若∠ABC=90°,記點(diǎn)M運(yùn)動(dòng)所經(jīng)過(guò)的路程為x(6≤x≤12).試問(wèn):x為何值時(shí),△ADN為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,下列條件之一能使?ABCD是菱形的有______(填序號(hào))
①AC⊥BD
②∠BAD=90°
③AB=BC
④AC=BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

將兩張寬度相等的矩形紙片疊放在一起得到如圖所示的四邊形ABCD.
(1)求證:四邊形ABCD是菱形;
(2)如果兩張矩形紙片的長(zhǎng)都是8,寬都是2.那么菱形ABCD的周長(zhǎng)是否存在最大值或最小值?如果存在,請(qǐng)求出來(lái);如果不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知菱形的周長(zhǎng)為40,兩條對(duì)角線長(zhǎng)度之比為3:4,那么對(duì)角線的長(zhǎng)度分別為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在菱形ABCD中,∠ABC=110°,BC的垂直平分線交對(duì)角線AC于點(diǎn)F,垂足為E,連接DF,則∠ADF的度數(shù)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角梯形ABCD中,ABDC,CB⊥AB,AB=20cm,BC=4cm,CD=15cm.點(diǎn)P、Q分別以A、C同時(shí)出發(fā),以vP=4cm/s,vQ=1cm/s在AB、CD邊上移動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),求:
(1)t為何值時(shí),四邊形APQD是平行四邊形?
(2)t為何值時(shí),四邊形APQD是直角梯形?
(3)t為何值時(shí),四邊形APQD是等腰梯形?

查看答案和解析>>

同步練習(xí)冊(cè)答案