如圖,開口向下的拋物線y=ax2-8ax+12a與x軸交于A、B兩點,拋物線上另有一點C在第一象限,且使△OCA∽△OBC,
(1)求OC的長及的值;
(2)設(shè)直線BC與y軸交于P點,點C是BP的中點時,求直線BP和拋物線的解析式.

【答案】分析:(1)根據(jù)拋物線的解析式即可求出A、B的坐標(biāo),也就得出了OA、OB的長,根據(jù)題中給出的相似三角形得出的比例線段可求出OC的長.已知了OA、OB的長即可得出三角形OBC和三角形OCA的面積比,而根據(jù)面積比等于相似比的平方即可得出BC與AC的比例關(guān)系.
(2)當(dāng)C是BP中點是,OC就是直角三角形OBP的斜邊的中線,因此OC=BC,三角形OCB是等腰三角形,可過C作x軸的垂線通過構(gòu)建直角三角形求出C點坐標(biāo),進(jìn)而可得出直線BP的解析式,將C點坐標(biāo)代入拋物線中即可求出二次函數(shù)的解析式.
解答:解:
(1)由題設(shè)知a<0,
且方程ax2-8ax+12a=0有兩二根,
兩邊同時除以a得,x2-8x+12=0
原式可化為(x-2)(x-6)=0
x1=2,x2=6
于是OA=2,OB=6
∵△OCA∽△OBC
∴OC2=OA•OB=12即OC=2
===3,故

(2)因為C是BP的中點
∴OC=BC從而C點的橫坐標(biāo)為3

設(shè)直線BP的解析式為y=kx+b,
因其過點B(6,0),
則有


又點在拋物線上


∴拋物線解析式為:
點評:本題考查了二次函數(shù)解析式的確定、函數(shù)圖象交點、相似三角形的性質(zhì)等知識點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,開口向下的拋物線y=ax2-8ax+12a與x軸交于A、B兩點,拋物線上另有一點C在第一象限,且使△精英家教網(wǎng)OCA∽△OBC.
(1)求OC的長及
BCAC
的值;
(2)設(shè)直線BC與y軸交于P點,點C是BP的中點時,求直線BP和拋物線的解析式.
(3)在(2)的條件下,在x軸上是否存在一點Q,使△OCQ是等腰三角形?不存在,請說明理由;存在,寫出Q點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,開口向下的拋物線y=ax2-8ax+12a與x軸交于A、B兩點,拋物線上另有一點C在第一精英家教網(wǎng)象限,且使△OCA∽△OBC,
(1)求OC的長及
BCAC
的值;
(2)設(shè)直線BC與y軸交于P點,點C是BP的中點時,求直線BP和拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,開口向下的拋物線y=ax2+hx+c交y軸的正半軸于點A,對稱軸是直線x=1,則下列結(jié)論正確的是( 。
A、a+2b+4c<0B、c<0C、2a+b-c=0D、b=-2a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年湖北省黃岡中學(xué)自主招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,開口向下的拋物線y=ax2-8ax+12a與x軸交于A、B兩點,拋物線上另有一點C在第一象限,且使△OCA∽△OBC,
(1)求OC的長及的值;
(2)設(shè)直線BC與y軸交于P點,點C是BP的中點時,求直線BP和拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊答案