【題目】如圖,點分別在正三角形的三邊上,且也是正三角形.若的邊長為,的邊長為,則的內切圓半徑為__________.
【答案】
【解析】
根據(jù)△ABC、△EFD都是等邊三角形,可證得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根據(jù)切線長定理得到AH=(AE+AF-EF)=(a-b);,再根據(jù)直角三角形的性質即可求出△AEF的內切圓半徑.
解:如圖1,⊙I是△ABC的內切圓,由切線長定理可得:AD=AE,BD=BF,CE=CF,
∴AD=AE=[(AB+AC)-(BD+CE)]= [(AB+AC)-(BF+CF)]=(AB+AC-BC),
如圖2,∵△ABC,△DEF都為正三角形,
∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,
∴∠1+∠2=∠2+∠3=120°,∠1=∠3;
在△AEF和△CFD中,
,
∴△AEF≌△CFD(AAS);
同理可證:△AEF≌△CFD≌△BDE;
∴BE=AF,即AE+AF=AE+BE=a.
設M是△AEF的內心,過點M作MH⊥AE于H,
則根據(jù)圖1的結論得:AH=(AE+AF-EF)=(a-b);
∵MA平分∠BAC,
∴∠HAM=30°;
∴HM=AHtan30°=(a-b)=
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,是角平分線,是中線,于點G,交于點F,交于點M,的延長線交于點H.
(1)圖中與線段相等的線段是________;
(2)求證:點H為線段的中點;
(3)若,探究線段與之間的數(shù)量關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy 中,點P是⊙C外一點,連接CP交⊙C于點Q,點P關于點Q的對稱點為P′,當點P′在線段CQ上時,稱點P為⊙C“友好點”.已知A(1,0),B(0,2),C(3,3)
(1)當⊙O的半徑為1時,
①點A,B,C中是⊙O“友好點”的是 ;
②已知點M在直線y=﹣x+2 上,且點M是⊙O“友好點”,求點M的橫坐標m的取值范圍;
(2)已知點D,連接BC,BD,CD,⊙T的圓心為T(t,﹣1),半徑為1,若在△BCD上存在一點N,使點N是⊙T“友好點”,求圓心T的橫坐標t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A、B兩點,與y軸交于點C,對稱軸為直線x=-1,點B的坐標為(1,0),則下列結論:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正確的結論有( 。﹤.
A. 3B. 4C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC,按以下步驟作圖:①分別以 B,C 為圓心,以大于BC 的長為半徑作弧,兩弧相交于兩點 M,N;②作直線 MN 交 AB 于點 D,連接 CD.若 CD=AC,∠A=50°,則∠ACB 的度數(shù)為
A.90°B.95°C.105°D.110°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形AOBC是正方形,點C的坐標是(4,0).
(Ⅰ)正方形AOBC的邊長為 ,點A的坐標是 .
(Ⅱ)將正方形AOBC繞點O順時針旋轉45°,點A,B,C旋轉后的對應點為A′,B′,C′,求點A′的坐標及旋轉后的正方形與原正方形的重疊部分的面積;
(Ⅲ)動點P從點O出發(fā),沿折線OACB方向以1個單位/秒的速度勻速運動,同時,另一動點Q從點O出發(fā),沿折線OBCA方向以2個單位/秒的速度勻速運動,運動時間為t秒,當它們相遇時同時停止運動,當△OPQ為等腰三角形時,求出t的值(直接寫出結果即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AP是⊙O的切線,點A為切點,BP與⊙O交于點C,點D是AP的中點,連結CD.
(1)求證:CD是⊙O的切線;
(2)若AB=2,∠P=30°,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,三根同樣的繩子AA1、BB1、CC1穿過一塊木板,姐妹兩人分別站在木板的左、右兩側,每次各自選取本側的一根繩子,每根繩子被選中的機會相等.
(1)問:“姐妹兩人同時選中同一根繩子”這一事件是 事件,概率是 ;
(2)在互相看不見的條件下,姐姐先將左側A、C兩個繩端打成一個連結,則妹妹從右側A1、B1、C1三個繩端中隨機選兩個打一個結(打結后仍能自由地通過木孔);請求出“姐姐抽動繩端B,能抽出由三根繩子連結成一根長繩”的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:四邊形ABCD是平行四邊形,兩邊AB,AD的長是關于x的方程的兩個實數(shù)根.
(1)當m為何值時,四邊形ABCD是菱形?
(2)求出此時菱形ABCD的邊長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com